

Bamboo: A high-level HEP analysis library for ROOT::RDataFrame

The RDataFrame [https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html] class provides an efficient and flexible way to process
per-event information (stored in a TTree [https://root.cern/doc/master/classTTree.html]) and e.g. aggregate it into
histograms.

With the typical pattern of storing object arrays as a structure of arrays
(variable-sized branches with a common prefix in the names and length),
the expressions that are typically needed for a complete analysis quickly become
cumbersome to write (with indices to match, repeated sub-expressions etc.).
As an example, imagine the expression needed to calculate the invariant mass
of the two leading muons from a NanoAOD (which stores momenta with pt, eta and phi branches):
one way is to construct LorentzVector objects, sum and evaluate the invariant mass.
Next imagine doing the same thing with the two highest-pt jets that have a b-tag
and are not within some cone of the two leptons you already selected in another
way (while keeping the code maintainable enough to allow for passing jet momenta
with a systematic variation applied).

Bamboo attempts to solve this problem by automatically constructing
lightweight python wrappers based on the structure of the TTree [https://root.cern/doc/master/classTTree.html],
which allow to construct such expression with high-level code, similar to the
language that is commonly used to discuss and describe them. By constructing
an object representation of the expression, a few powerful operations can be
used to compose complex expressions.
This also allows to automate the construction of derived expressions, e.g. for
shape systematic variation histograms.

Building selections, plots etc. with such expressions is analysis-specific, but
the mechanics of loading data samples, processing them locally or on a batch
system (and merging the output of that), combining the outputs for different
samples in an overview etc. is very similar over a broad range of use cases.
Therefore a common implementation of these is provided, which can be used by
extending a base class (to fill histograms and make stacked plots, a class
needs to be written with a method that returns a list of ‘plot’ objects—each essentially a combination of an x-axis variable, selection, and weight
to apply to every event—and a configuration file that specifies which
datasets should be processed, and how they should be stacked).

Presentations

Bamboo has been presented at several workshops and working meetings:

	PyHEP2019 [https://indico.cern.ch/e/PyHEP2019] (16 October 2019):
presentation [https://indico.cern.ch/event/833895/timetable/#9-readable-and-efficient-hep-d] 10.5281/zenodo.3959253 [https://doi.org/10.5281/zenodo.3959253]

	84th ROOT Parallelism, Performance and Programming Model Meeting [https://indico.cern.ch/event/963454/] (8 October 2020)

	CMS Physics Workshop on Analysis Tools and Techniques [https://indico.cern.ch/event/971994/timetable/#20201118.detailed] (20 November 2020) presentation [https://indico.cern.ch/event/971994/timetable/#16-bamboo-a-rdataframe-framewo] [CMS internal]

	HSF WLCG Virtual Workshop [https://indico.cern.ch/event/941278/] (24 November 2020) presentation [https://indico.cern.ch/event/941278/timetable/?view=standard#10-bamboo-easy-and-efficient-a]

	HSF Data Analysis working group: Metadata discussions [https://indico.cern.ch/event/993424/] (16 February 2021)

	vCHEP2021 [https://indico.cern.ch/e/vCHEP2021] (18 May 2021) presentation [https://indico.cern.ch/event/948465/timetable/?view=standard#160-readable-and-efficient-hep]

A general writeup of the framework is also available in
10.1051/epjconf/202125103052 [https://doi.org/10.1051/epjconf/202125103052] or
2103.01889 [https://arxiv.org/abs/2103.01889], which may be cited as

@article{David:2021ohq,
 author = "David, Pieter",
 title = "{Readable and efficient HEP data analysis with bamboo}",
 DOI= "10.1051/epjconf/202125103052",
 journal = {EPJ Web Conf.},
 year = 2021,
 volume = 251,
 pages = "03052",
 eprint = "2103.01889",
 archivePrefix = "arXiv",
 primaryClass = "physics.data-an",
 reportNumber = "CP3-21-05",
}

Table of contents

	Introduction

	Installation and setup
	Dependencies and environment

	Installation

	Test your setup

	Getting started

	Machine learning packages

	Distributed RDataFrame

	EasyBuild-based installation at CP3

	User guide
	Running bambooRun

	Analysis YAML file format

	Analysis module

	Specifying cuts, weight, and variables: expressions

	Processing modes

	Examples

	Building expressions
	List of functions

	Recipes for common tasks
	Using scalefactors

	Pileup reweighting

	Cleaning collections

	Jet and MET systematics

	Rochester correction for muons

	Energy correction for taus

	Correlating systematic variations

	Splitting a sample into sub-components

	Adding command-line arguments

	Editing the analysis configuration

	Evaluate an MVA classifier

	Make combined plots for different selections

	Producing skimmed trees

	Postprocessing beyond plotIt

	Data-driven backgrounds and subprocesses

	Dealing with (failed) batch jobs

	Reproducible analysis: keep track of the version that produced some results

	SVfit for the reconstruction of the Higgs mass in \(H\rightarrow \tau\tau\) events

	Advanced topics
	Loading (and using) C++ modules

	Distributed RDataFrame

	Ordering selections and plots efficiently

	Different backends

	Under the hood
	Debugging problems

	Different components and their interactions

	Running the tests, or adding test cases

	API Reference
	Plots and selections

	Analysis modules

	Tree decoratorator customisation

	Helper functions

Indices and tables

	Index

	Module Index

	Search Page

Installation and setup

Dependencies and environment

Bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] only depends on python3 (with pip/setuptools to install PyYAML and
numpy if needed) and a recent version of ROOT (6.20/00 is the minimum
supported version, as it introduces some compatibility features for the
new PyROOT [https://root.cern/blog/new-pyroot-622/] in 6.22/00).

On user interface machines (lxplus, ingrid, or any machine with cvmfs),
an easy way to get such
a recent version of ROOT is through a CMSSW release that depends on it,
or from the SPI LCG distribution [http://spi.web.cern.ch], e.g.

source /cvmfs/sft.cern.ch/lcg/views/LCG_102/x86_64-centos7-gcc11-opt/setup.sh
python -m venv bamboovenv
source bamboovenv/bin/activate

(the second command creates a virtual environment [https://packaging.python.org/tutorials/installing-packages/#creating-virtual-environments]
to install python packages in, after installation it is sufficient to run two
other commands, to pick up the correct base system and then the installed
packages).

Alternatively, a conda environment [https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-envs] (e.g. with Miniconda [https://docs.conda.io/en/latest/miniconda.html]) can be created
with

conda config --add channels conda-forge # if not already present
conda create -n test_bamboo root pyyaml numpy cmake boost
conda activate test_bamboo

and bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] installed directly there with pip, or in a virtual environment [https://packaging.python.org/tutorials/installing-packages/#creating-virtual-environments]
inside the conda environment [https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-envs] (make sure to pass --system-site-packages
to venv then); conda-build [https://docs.conda.io/projects/conda-build/en/latest/] recipes are
in the plans [https://gitlab.cern.ch/cp3-cms/bamboo/-/issues/65].

A docker image [https://hub.docker.com/r/pieterdavid/bamboo-docker]
(based on repo2docker [https://repo2docker.readthedocs.io/en/latest/],
configuration [https://github.com/pieterdavid/bamboo-docker]) with an
up-to-date version of bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] and plotIt [https://github.com/cp3-llbb/plotIt] is also available.
It is compatible with binder [https://mybinder.readthedocs.io/en/latest/],
which can be used to run some
examples [https://github.com/pieterdavid/bamboo-opendata-examples] without
installing anything locally.

Some features bring in additional dependencies. Bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] should detect if these
are relied on and missing, and print a clear error message in that case.
Currently, they include:

	the dasgoclient executable (and a valid grid proxy) for retrieving the list
of files in samples specified with db: das:/X/Y/Z. Due to some
interference with the setup script above, the best is to run the cms
environment scripts first, and also run voms-proxy-init then (this can
alternatively also be done from a different shell on the same machine)

	the slurm command-line tools, and CP3SlurmUtils [https://cp3-git.irmp.ucl.ac.be/cp3-support/helpdesk/wikis/Slurm#the-cp3slurmutils-package], which can be installed using pip
(or loaded with module load slurm/slurm_utils on the UCLouvain ingrid ui machines)

	machine learning libraries (libtorch [https://pytorch.org/cppdocs/], Tensorflow-C [https://www.tensorflow.org/install/lang_c], lwtnn [https://github.com/lwtnn/lwtnn]): see
this section for more information

	writing out tables in LaTeX format from cutflow reports relies needs
pyplotit [https://gitlab.cern.ch/cp3-cms/pyplotit] (see below)

	Dask [https://docs.dask.org/en/stable/] or pySpark [https://spark.apache.org/docs/latest/api/python/] for running distributed RDataFrame (see below)

Installation

Bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] can (and should, in most cases) be installed in a
virtual environment [https://packaging.python.org/tutorials/installing-packages/#creating-virtual-environments] or conda environment (see above) with pip:

pip install bamboo-hep

Since Bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] is still in heavy development, you may want to fetch the latest
(unreleased) version using one of:

pip install git+https://gitlab.cern.ch/cp3-cms/bamboo.git
pip install git+ssh://git@gitlab.cern.ch:7999/cp3-cms/bamboo.git

It may even be useful to install from
a local clone, such that you can use it to test and propose changes, using

git clone -o upstream https://gitlab.cern.ch/cp3-cms/bamboo.git /path/to/your/bambooclone
pip install /path/to/your/bambooclone ## e.g. ./bamboo (not bamboo - another package with that name exists)

such that you can update later on with (inside /path/to/your/bambooclone)

git pull upstream master
pip install --upgrade .

It is also possible to install bamboo in editable mode for development;
to avoid problems, this should be done in a separate virtual environment:

python -m venv devvenv ## deactivate first, or use a fresh shell
source devvenv/bin/activate ## deactivate first, or use a fresh shell
export SETUPTOOLS_ENABLE_FEATURES=legacy-editable
pip install -e ./bamboo

Note that this will store cached build outputs in the _skbuild directory.
python setup.py clean --all can be used to clean this up
(otherwise they will prevent updating the non-editabl install).
The additional environment variable is a workaround for a bug in scikit-build, see this issue [https://gitlab.cern.ch/cp3-cms/bamboo/-/issues/100].

The documentation can be built locally with python setup.py build_sphinx,
and for running all (or some) tests the easiest is to call pytest directly,
with the bamboo/tests directory to run all tests, or with a specific file
to check only the tests defined there.

Note

bamboo is a shared package, so everything that is specific to a single
analysis (or a few related analyses) is best stored elsewhere (e.g. in
bamboodev/myanalysis in the example below); otherwise you will need to
be very careful when updating to a newer version.

The bambooRun command can pick up code in different ways, so it is
possible to start from a single python file, and move to a pip-installed
analysis package later on when code needs to be shared between modules.

For combining the different histograms in stacks and producing pdf or png files,
which is used in many analyses, the plotIt [https://github.com/cp3-llbb/plotIt] tool is used.
It can be installed with cmake, e.g.

git clone -o upstream https://github.com/cp3-llbb/plotIt.git /path/to/your/plotitclone
mkdir build-plotit
cmake -DCMAKE_INSTALL_PREFIX=$VIRTUAL_ENV -S /path/to/your/plotitclone -B build-plotit
cmake --build build-plotit -t install -j 4

where -DCMAKE_INSTALL_PREFIX=$VIRTUAL_ENV ensures that the plotIt
executable will be installed directly in the bin directory of the
virtualenv (if not using a virtualenv, its path can be passed to bambooRun
with the --plotIt command-line option).

plotIt [https://github.com/cp3-llbb/plotIt] is very efficient at what it does, but not so easy to adapt to producing
efficiently plots, overlays of differently defined distributions etc.
Therefore a python implementation of its main functionality was started in the
pyplotit [https://gitlab.cern.ch/cp3-cms/pyplotit] package, which can be installed with

pip install git+https://gitlab.cern.ch/cp3-cms/pyplotit.git

or editable from a local clone:

git clone -o upstream https://gitlab.cern.ch/cp3-cms/pyplotit.git
pip install -e pyplotit

pyplotit [https://gitlab.cern.ch/cp3-cms/pyplotit] parses plotIt [https://github.com/cp3-llbb/plotIt] YAML files and implements the same grouping and
stack-building logic; an easy way to get started with it is through the
iPlotIt script, which parses a plotIt [https://github.com/cp3-llbb/plotIt] configuration file and launches
an IPython shell.
Currently this is used in bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] for producing yields tables from cutflow reports.
It is also very useful for writing custom postprocess functions, see
this recipe for an example.

To use scalefactors and weights in the new CMS JSON format, the correctionlib [https://github.com/cms-nanoAOD/correctionlib]
package should be installed with

pip install --no-binary=correctionlib correctionlib

The calculators modules for
jet and MET corrections and systematic variations
were moved to a separate repository and package, such that they can also be used
from other frameworks.
The repository can be found at
cp3-cms/CMSJMECalculators [https://gitlab.cern.ch/cp3-cms/CMSJMECalculators.git],
and installed with

pip install git+https://gitlab.cern.ch/cp3-cms/CMSJMECalculators.git

For the impatient: recipes for installing and updating

Putting the above commands together, the following should give you a virtual
environment with bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html], and a clone of bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] and plotIt in case you need to
modify them, all under bamboodev:

Fresh install

mkdir bamboodev
cd bamboodev
make a virtualenv
source /cvmfs/sft.cern.ch/lcg/views/LCG_102/x86_64-centos7-gcc11-opt/setup.sh
python -m venv bamboovenv
source bamboovenv/bin/activate
clone and install bamboo
git clone -o upstream https://gitlab.cern.ch/cp3-cms/bamboo.git
pip install ./bamboo
clone and install plotIt
git clone -o upstream https://github.com/cp3-llbb/plotIt.git
mkdir build-plotit
cd build-plotit
cmake -DCMAKE_INSTALL_PREFIX=$VIRTUAL_ENV ../plotIt
make -j2 install
cd -

Environment setup

Once bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] and plotIt have been installed as above, only the following two
commands are needed to set up the environment in a new shell:

source /cvmfs/sft.cern.ch/lcg/views/LCG_102/x86_64-centos7-gcc11-opt/setup.sh
source bamboodev/bamboovenv/bin/activate

Update bamboo

Assuming the environment is set up as above; this can also be used to test a
pull request or local modifications to the bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] source code

cd bamboodev/bamboo
git checkout master
git pull upstream master
pip install --upgrade .

Update plotIt

Assuming the environment is set up as above; this can also be used to test a
pull request or local modifications to the plotIt source code.
If a plotIt build directory already exists it should have been created with the same
environment, otherwise the safest solution is to remove it.

cd bamboodev
mkdir build-plotIt
cd build-plotit
cmake -DCMAKE_INSTALL_PREFIX=$VIRTUAL_ENV ../plotIt
make -j2 install
cd -

Move to a new LCG release or install an independent version

Different virtual environments can exist alongside each other, as long as for
each the corresponding base LCG distribution is setup in a fresh shell.
This allows to have e.g. one stable version used for analysis, and another one
to test experimental changes, or check a new LCG release, without touching a
known working version.

cd bamboodev
source /cvmfs/sft.cern.ch/lcg/views/LCG_102/x86_64-centos7-gcc11-opt/setup.sh
python -m venv bamboovenv_X
source bamboovenv_X/bin/activate
pip install ./bamboo
install plotIt (as in "Update plotIt" above)
mkdir build-plotit
cd build-plotit
cmake -DCMAKE_INSTALL_PREFIX=$VIRTUAL_ENV ../plotIt
make -j2 install
cd -

Test your setup

Now you can run a few simple tests on a CMS NanoAOD to see if the installation
was successful. A minimal example is run by the following command:

bambooRun -m /path/to/your/bambooclone/examples/nanozmumu.py:NanoZMuMu /path/to/your/bambooclone/examples/test1.yml -o test1

which will run over a single sample of ten events and fill some histograms
(in fact, only one event passes the selection, so they will not look very
interesting).
If you have a NanoAOD file with muon triggers around, you can put its path
instead of the test file in the yml file and rerun to get a nicer plot (xrootd
also works, but only for this kind of tests—in any practical case the
performance benefit of having the files locally is worth the cost of replicating
them).

Getting started

The test command above shows how bamboo is typically run: using the
bambooRun command, with a python module that specifies what
to run, and an analysis YAML file that specifies which
samples to process, and how to combine them in plots (there are several options
to run a small test, or submit jobs to the batch system when processing a lot
of samples).

A more realistic analysis YAML configuration file is
bamboo/examples/analysis_zmm.yml [https://gitlab.cern.ch/cp3-cms/bamboo/blob/master/examples/analysis_zmm.yml],
which runs on a significant fraction of the 2016 and 2017 DoubleMuon data
and the corresponding Drell-Yan simulated samples.
Since the samples are specified by their DAS path in this case, the
dasgoclient executable and a valid grid proxy are needed for resolving
those to files, and a configuration file that describes the
local computing environment (i.e. the root path of the local CMS grid storage,
or the name of the redirector in case of using xrootd); examples are included
for the UCLouvain-CP3 and CERN (lxplus/lxbatch) cases.

The corresponding
python module [https://gitlab.cern.ch/cp3-cms/bamboo/blob/master/examples/nanozmumu.py]
shows the typical structure of ever tighter event selections that derive from
the base selection, which accepts all the events in the input, and plots that
are defined based on these selection, and returned in a list from the main
method (this corresponds to the pdf or png files that will be produced).

The module deals with a decorated version of the tree, which can also be
inspected from an IPython shell by using the -i option to bambooRun,
e.g.

bambooRun -i -m /path/to/your/bambooclone/examples/nanozmumu.py:NanoZMuMu /path/to/your/bambooclone/examples/test1.yml

together with the helper methods defined on this page,
this allows to define a wide variety of selection requirements and variables.

The user guide contains a much more detailed description of
the different files and how they are used, and the
analysis recipes page provides more information about the
bundled helper methods for common tasks.
The API reference describes all available user-facing methods
and classes.
If the builtin functionality is not sufficient, some hints on extending or
modifying bamboo can be found in the advanced topics and the
hacking guide.

Machine learning packages

In order to evaluate machine learning classifiers, bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] needs to find the
necessary C(++) libraries, both when the extension libraries are compiled and
at runtime (so they need to be installed before (re)installing bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html]).
libtorch [https://pytorch.org/cppdocs/] is searched for in the torch package with pkg_resources,
which unfortunately does not always work due to pip build isolation.
This can be bypassed by passing --no-isolated-build when installing, or by
installing bamboo-hep[torch], which will install it as a dependency (it is
quite big, so if the former method works it should be preferred).
The --no-isolated-build option is a workaround: when passing CMake options
to pip install (see
scikit-build#479 [https://github.com/scikit-build/scikit-build/issues/479])
will be possible, that will be a better solution.
The minimum version required for libtorch [https://pytorch.org/cppdocs/] is 1.5 (due to changes in
the C++ API), which is available from LCG_99 on (contains libtorch [https://pytorch.org/cppdocs/] 1.7.0).
Tensorflow-C [https://www.tensorflow.org/install/lang_c] and lwtnn [https://github.com/lwtnn/lwtnn] will be searched for (by cmake and the dynamic library
loader) in the default locations, supplemented with the currently active
virtual environment [https://packaging.python.org/tutorials/installing-packages/#creating-virtual-environments], if any (scripts to install them there directly are
included in the bamboo source code respository, as
ext/install_tensorflow-c.sh and ext/install_lwtnn.sh).
ONNX Runtime [https://www.onnxruntime.ai] should be part of recent LCG distribution.
If not, it will be searched for in the standard locations.
It can be added to the virtual environment [https://packaging.python.org/tutorials/installing-packages/#creating-virtual-environments] by following the
instruction [https://github.com/microsoft/onnxruntime/blob/master/BUILD.md#linuxmacos]
to build from source, with the additional option
--cmake_extra_defines=CMAKE_INSTALL_PREFIX=$VIRTUAL_ENV, after which
make install from its build/Linux/<config> will install it correctly
(replacing <config> by the CMake build type, e.g. Release or
RelWithDebInfo).

Note

Installing a newer version of libtorch [https://pytorch.org/cppdocs/] in a virtualenv if it is
also available through the PYTHONPATH (e.g. in the LCG distribution)
generally does not work, since virtualenv uses PYTHONHOME, which has
lower precedence.
For the pure C(++) libraries Tensorflow-C [https://www.tensorflow.org/install/lang_c] and lwtnn [https://github.com/lwtnn/lwtnn] this could be made to
work, but currently the virtual environment is only explicitly searched if
they are not found otherwise.
Therefore it is recommended to stick with the version provided by the LCG
distribution, or set up an isolated environment with conda—see the
issues #68 [https://gitlab.cern.ch/cp3-cms/bamboo/-/issues/68] (for now) and #65 [https://gitlab.cern.ch/cp3-cms/bamboo/-/issues/65] for more information. When a stable
solution is found it will be added here.

Warning

the libtorch [https://pytorch.org/cppdocs/] and Tensorflow-C [https://www.tensorflow.org/install/lang_c] builds in LCG_98python3 contain
AVX2 instructions (so one of
these [https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_with_AVX2]
CPU generations).
See issue #68 [https://gitlab.cern.ch/cp3-cms/bamboo/-/issues/68] for more a more detailed discussion, and a possible workaround.

Distributed RDataFrame

Through distributed ROOT::RDataFrame [https://root.cern/doc/master/classROOT_1_1RDataFrame.html#distrdf], bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] can distribute the computations on a cluster managed by Dask [https://docs.dask.org/en/stable/] or pySpark [https://spark.apache.org/docs/latest/api/python/].
While Dask [https://docs.dask.org/en/stable/], using Dask-jobqueue [https://jobqueue.dask.org/en/latest/index.html], can work on any existing cluster managed by SLURM or HTCondor, Spark requires a Spark scheduler to be running at your computing centre.

To install the required dependencies, run either one of:

pip install bamboo-hep[dask]
pip install bamboo-hep[spark]

EasyBuild-based installation at CP3

On the ingrid/manneback cluster at UCLouvain-CP3, and other environments that
use EasyBuild [https://easybuild.io], it is also possible to install bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] based on the dependencies
that are provided through this mechanism (potentially with some of them built
as user modules).
The LCG source script in the instructions above should then be replaced by e.g.

module load ROOT/6.22.08-foss-2019b-Python-3.7.4 CMake/3.15.3-GCCcore-8.3.0 \
 Boost/1.71.0-gompi-2019b matplotlib/3.1.1-foss-2019b-Python-3.7.4 \
 PyYAML/5.1.2-GCCcore-8.3.0 TensorFlow/2.1.0-foss-2019b-Python-3.7.4

User guide

This section contains some more information on doing your analysis with bamboo.
It assumes you have successfully installed it following the instructions in the
previous section.

The first thing to make sure is that bamboo can work with your trees.
With CMS NanoAOD, many analysis use the same (or a very similar) tree format,
which is why a set of decorators for is included in
bamboo.treedecorators.decorateNanoAOD(); to make stacked histogram
plots from them it is sufficient to make your analysis module inherit from
bamboo.analysismodules.NanoAODHistoModule
(which calls this method from its
prepareTrees() method).
Other types of trees can be included in a similar way, but a bit of development
is needed to provided a more convenient way to do so (help welcome).

Running bambooRun

The bambooRun executable script can be used to run over some samples and
derive other samples or histograms from them. It needs at least two arguments: a
python module, which will tell it what to do for each event,
and a configuration file with a list of samples to process,
plot settings etc.

Typically, bambooRun would be invoked with

bambooRun -m module-specification config-file-path -o my-output

where module-specification is of the format modulename:classname, and
modulename can be either a file path like somedir/mymodule.py or an
importable module name like myanalysispackage.mymodule.
This will construct an instance of the specified module, passing it any
command-line arguments that are not used directly by bambooRun, and run it.

The default base module (bamboo.analysismodules.AnalysisModule, see
below) provides a number of convenient command-line
options (and individual modules can add more by implementing the
addArgs() method).

	the -h (--help) switch prints the complete list of supported
options and arguments, including those defined by the module if used with
bambooRun -h -m mymodule

	the -o (--output) option can be used to specify the base directory for
output files

	the -v (--verbose) switch will produce more output messages, and also
print the full C++ code definitions that are passed to RDataFrame [https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html] (which is
very useful for debugging)

	the -i (--interactive) switch will only load one file and launch an
IPython terminal, where you can have a look at its structure and test
expressions

	the --maxFiles option can be used to specify a maximum number of files
to process for each sample, e.g. --maxFiles=1 to check that the module
runs correctly in all cases before submitting to a batch system

	the --eras option specifies which of the eras from the configuration file
to consider, and which type of plots to make. The format is
[mode][:][era1,era2,...], where mode is one of split (plots for
each of the eras separately), combined (only plots for all eras combined)
or all (both of these, this is the default).

	the --distributed mode specifies how the processing should run (locally, on a cluster, …), see below.

	the -t (--threads) option can be used to run in multi-threaded mode, for both the local or batch mode

Computing environment configuration file

For some features such as automatically converting logical filenames from DAS
to physical filenames at your local T2 storage (or falling back to xrootd),
submitting to a batch cluster etc., some information about the computing
resources and environment is needed.
In order to avoid proliferating the command-line interface of bambooRun,
these pieces of information are bundled in a file that can be passed in one go
through the --envConfig option.
If not specified, Bamboo [https://bamboo-hep.readthedocs.io] will try to read bamboo.ini in the current
directory, and then $XDG_CONFIG_HOME/bamboorc (which typically resolves to
~/.config/bamboorc).
Since these settings are not expected to change often or much, it is advised to
copy the closest example (e.g. examples/ingrid.ini or
examples/lxplus.ini) to ~/.config/bamboorc and edit if necessary.

Analysis YAML file format

The analysis configuration file should be in the YAML [https://yaml.org] format. This was chosen
because it can easily be parsed while also being very readable (see the
YAML Wikipedia page [https://en.wikipedia.org/wiki/YAML] for some examples and context) - it essentially becomes
a nested dictionary, which can also contain lists.

Three top-level keys are currently required: tree with the name of the TTree [https://root.cern/doc/master/classTTree.html]
inside the file (e.g. tree: Events for NanoAOD), samples with a list of
samples to consider, and eras, with a list of data-taking periods and their
integrated luminosity.
For stacked histogram plots, a plotIt section should also be specified (the
bamboo.analysisutils.runPlotIt() method will insert the files and
plots sections and run plotIt [https://github.com/cp3-llbb/plotIt] with the resulting configuration; depending
on the --eras option passed, per-era or combined plots will be produced, or
both, which is the default).
Each entry in the plots section will contain the combination of the
settings explicitly passed to make1D(), those
present in plotDefaults,
and those specified under the plotdefaults block in the plotIt section
of the analysis configuration file (in this order of precedence); if the values
are callable, the result of calling them on the Plot
is used (which may be useful to adjust e.g. the axis range to the binning; by
default the binning range is used as x-axis range).
The full list of plotIt [https://github.com/cp3-llbb/plotIt] configuration options can be found
on this page [http://cp3-llbb.github.io/plotit/].

Each entry in the samples dictionary (the keys are the names of the samples)
is another dictionary. The files to processed can be specified directly as a
list under files (with paths relative to the location of the config file,
which is useful for testing), or absolute paths/urls (e.g. xrootd).
If files is a string, it is taken as a file with a list of such paths/urls.
For actual analyses, however, samples will be retrieved from a database, e.g.
DAS [https://cmsweb.cern.ch/das/] or SAMADhi [https://cp3.irmp.ucl.ac.be/samadhi/index.php] (support for the latter still needs to be implemented).
In that case, the database path or query can be specified under db, e.g.
db: das:/SingleMuon/Run2016E-Nano14Dec2018-v1/NANOAOD.
The results of these queries can be cached locally by adding a dbcache
top-level configuration entry, with a directory where the text files can be
stored.
For each sample a file <sample_name>.txt will be created, with a comment
that contains the db value used to create it, such that changes can
automatically be detected and the query redone, and the list of files.
To force rerunning some or all queries, the corresponding files or the whole
cache directory can be moved or deleted.

Which NanoAOD samples to use?

When analysing CMS NanoAOD samples there are two options: postprocessing
the centrally produced NanoAOD samples with CRAB to add corrections and
systematic variations as new branches, or calculating these on demand (see
the corresponding recipes for more details).
Which solution is optimal depends on the case (it is a trade-off between file
size and the time spent on calculating the variations), but the latter is the
easiest to get started with: just create some
Rucio rules [https://twiki.cern.ch/twiki/bin/view/CMSPublic/RucioUserDocsRules]
to make the samples available locally: the transfers are usually very fast—much faster than processing all the samples with CRAB.
Tip: with Rucio containers [https://twiki.cern.ch/twiki/bin/view/CMSPublic/RucioUserDocsContainers]
you can group datasets and manage them together.
Depending on the site policies you may need to ask for
quota [https://twiki.cern.ch/twiki/bin/view/CMSPublic/RucioUserDocsQuotas]
or approval of the rules.

Tip

Samples in DAS and SAMADhi rarely change, and reading a local file is almost
always faster than doing queries (and does not require a grid proxy etc.),
so especially when using many samples from these databases it is recommended
to cache the file lists resulting from these results, by specifying a path
under dbcache at the top level of the configuration file
(see below for an example).

For data, it is usually necessary to specify a json file to filter the good
luminosity blocks (and a run range to consider from it, for efficiency).
If an url is specified for the json file, the file will be downloaded
automatically (and added to the input sandbox for the worker tasks, if needed).

For the formatting of the stack plots, each sample needs to be in a group (e.g.
‘data’ for data etc.), which will be taken together as one contribution.
The era key specifies which era (one of those specified in the eras
section, see above) the sample corresponds to, and which luminosity value
should be used for the normalisation.

For the normalization of simulated samples in the stacks, the number of
generated evens and cross-section are also needed. The latter should be
specified as cross-section with the sample (in the same units as the
luminosity for the corresponding era), the former can be computed from
the input files. For this, the
bamboo.analysismodules.HistogramsModule base class will call the
mergeCounters method when processing the samples, and the readCounters
method to read the values from the results file - for NanoAOD the former merges
the Runs trees and saves the results, while the latter performs the sum of
the branch with the name specified under generated-events.

For large samples, a split property can be specified, such that the input
files are spread out over different batch jobs.
A positive number is taken as the number of jobs to divide the inputs over,
while a negative number gives the number of files per job (e.g. split: 3
An era key is also foreseen (to make 2016/2017/2018/combined plots) - but
it is currently ignored.
will create three jobs to process the sample, while split: -3 will result
in jobs that process three files each).

All together a typical analysis YAML [https://yaml.org] file would look like the following (but
with many more sample blocks, and typically a few era blocks; the plotIt
section is left out for brevity).

tree: Events
eras:
 '2016':
 luminosity: 12.34
dbcache: dascache
samples:
 SingleMuon_2016E:
 db: das:/SingleMuon/Run2016E-Nano14Dec2018-v1/NANOAOD
 run_range: [276831, 277420]
 certified_lumi_file: https://cms-service-dqm.web.cern.ch/cms-service-dqm/CAF/certification/Collisions16/13TeV/ReReco/Final/Cert_271036-284044_13TeV_23Sep2016ReReco_Collisions16_JSON.txt
 era: 2016
 group: data

 DY_high_2017:
 db: das:/DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8/RunIIFall17NanoAODv4-PU2017_12Apr2018_Nano14Dec2018_new_pmx_102X_mc2017_realistic_v6_ext1-v1/NANOAODSIM
 era: 2017
 group: DY
 cross-section: 5765.4
 generated-events: genEventSumw
 split: 3

Tip

It is possible to insert the content of a configuration file into another, e.g. to separate or reuse the plot- and samples-related setings: simply use the syntax !include file.yml in the exact place where you would like to insert the content of file.yml.

Analysis module

For an analysis module to be run with bambooRun, it in principle only needs
a constructor that takes an argument with command-line arguments, and a run
method. bamboo.analysismodules provides a more interesting base class
AnalysisModule that provides a lot of common
functionality (most notably: parsing the analysis configuration, running
sequentially or distributed (and also as worker task in the latter case), and
provides addArgs(),
initialize(),
processTrees(),
postProcess(), and
interact(), interface member
methods that should be further specified by subclasses (see the
reference documentation for more details).

HistogramsModule does this for the
stacked histogram plots, composing
processTrees() from
prepareTree() and
definePlots(), while taking
the JSON lumi block mask and counter merging into account.
It also calls the plotIt executable from
postProcess() (with the plots
list and analysis configuration file, it has all required information for that).
NanoAODHistoModule supplements this with
the decorations and counter merging and reading for NanoAOD,
such that all the final module needs to do is defining plots and selections,
as in the example examples.nanozmumu.
This layered structure is used such that code can be maximally reused for other
types of trees.

For the code inside the module, the example is also very instructive:

def definePlots(self, t, noSel, sample=None, sampleCfg=None):
 from bamboo.plots import Plot, EquidistantBinning
 from bamboo import treefunctions as op

 plots = []

 twoMuSel = noSel.refine("twoMuons", cut=[op.rng_len(t.Muon) > 1])
 plots.append(Plot.make1D("dimu_M", op.invariant_mass(t.Muon[0].p4, t.Muon[1].p4), twoMuSel,
 EquidistantBinning(100, 20., 120.), title="Dimuon invariant mass", plotopts={"show-overflow":False}))

 return plots

The key classes are defined in bamboo.plots:
Plot and Selection
(see the reference documentation for details).
The latter represents a consistent set of selection requirements (cuts) and
weight factors (e.g. to apply corrections). Selections are defined by refining
a “root selection” with additional cuts and weights, and each should have a
unique name (an exception is raised at construction otherwise).
The root selection allows to do some customisation upfront, e.g. the applying
the JSON luminosity block mask for data.
A plot object refers to a selection, and specifies which variable(s) to plot,
with which binning(s), labels, options etc. (the plotOpts dictionary is
copied directly into the plot section of the plotIt configuration file).

Histograms corresponding to systematic variations (of scalefactors, collections
etc.—see below) are by default generated automatically alongside the
nominal one.
This can however easily be disabled at the level of a
Selection (and, consequently, all
Selection instances deriving from it, and all
Plot instances using it) or a single plot, by passing
autoSyst=False to the refine() or
make1D() (or related) method, respectively,
when constructing them; so setting noSel.autoSyst = False right after
retrieving the decorated tree and root selection would turn disable all
automatic systematic variations.

Specifying cuts, weight, and variables: expressions

The first argument to the
definePlots()
method is the “decorated” tree—a proxy object from which expressions
can be derived. Sticking with the NanoAOD example, t.Muon is another
proxy object for the muon collection (similarly for the other objects),
t.Muon[0] retrieves the leading-pt muon proxy, and t.Muon[0].p4
its momentum fourvector.
The proxies are designed to behave as much as possible as the value types they
correspond to (you can get an item from a list, an attribute from an object,
you can also work with numerical values, e.g.
t.Muon[0].p4.Px()+t.Muon[1].p4.Px()) but for some more complex operations,
specific functions are needed. These are as much as possible defined in the
bamboo.treefunctions module, see Building expressions
for an overview of all the available methods.

Ideally, the decorated tree and the bamboo.treefunctions module
are all you ever need to import and know about the decorations.
Therefore the best way to proceed now is get a decorated tree
inside an IPython shell and play around.
For bamboo.analysismodules.HistogramsModule this can always be done
by passing the --interactive flag, with either one of
(depending on if you copied the NanoAOD test file above)

bambooRun -m bamboo/examples/nanozmumu.py:NanoZMuMu --interactive --distributed=worker bamboo/tests/data/DY_M50_2016.root
bambooRun -m bamboo/examples/nanozmumu.py:NanoZMuMu --interactive bamboo/examples/test_nanozmm.yml [--envConfig=bamboo/examples/ingrid.ini] -o int1

The decorated tree is in the tree variable (the original TChain is in
tup) and the bamboo.treefunctions module is there as op
(the c_... methods construct a constant, whereas the rng_... methods
work on a collection and return a single value,
whereas the select() method returns
a reduced collection (internally, only a list of indices to the passing objects
is created, and the result is a proxy that uses this list).
Some of the rng_... methods are extremely powerful, e.g.
rng_find() and
rng_max_element_by().

Tip

In addition to the branches read from the input tree, all elements of
collections have an idx attribute which contains their index in the
original collection (base), also in case they are obtained from a subset
(with select() or a slice), differently
ordered version (with sort()), or systematic
variation (e.g. for jets) of the collection.
This can be especially useful to ensure that two objects are (not)
identical, or when directly comparing systematic variations.
Similarly, all collections, selections, slices etc. have an idxs attribute,
with the list of indices in the original collection.

This can also be exploited to precalculate an expensive quantity for a
collection of objects (with map()), or even
to evaluate a quantity for items passing different selections (e.g. the
passing and failing selections), something like
fun(passing.base[op.switch(op.rng_len(passing) > 0, passing[0].idx, failing[0].idx)]).

The proxy classes are generated on the fly with all branches as attributes, so
tab-completion can be used to have a look at what’s there:

In [1]: tree.<TAB>
 tree.CaloMET tree.SoftActivityJetHT10
 tree.Electron tree.SoftActivityJetHT2
 tree.FatJet tree.SoftActivityJetHT5
 tree.Flag tree.SoftActivityJetNjets10
 tree.HLT tree.SoftActivityJetNjets2
 tree.HLTriggerFinalPath tree.SoftActivityJetNjets5
 tree.HLTriggerFirstPath tree.SubJet
 tree.Jet tree.Tau
 tree.L1Reco_step tree.TkMET
 tree.MET tree.TrigObj
 tree.Muon tree.deps
 tree.OtherPV tree.event
 tree.PV tree.fixedGridRhoFastjetAll
 tree.Photon tree.fixedGridRhoFastjetCentralCalo
 tree.PuppiMET tree.fixedGridRhoFastjetCentralNeutral
 tree.RawMET tree.luminosityBlock
 tree.SV tree.op
 tree.SoftActivityJet tree.run
 tree.SoftActivityJetHT

In [1]: anElectron = tree.Electron[0]

In [2]: anElectron.<TAB>
 anElectron.charge anElectron.eInvMinusPInv anElectron.mvaSpring16HZZ_WPL
 anElectron.cleanmask anElectron.energyErr anElectron.mvaTTH
 anElectron.convVeto anElectron.eta anElectron.op
 anElectron.cutBased anElectron.hoe anElectron.p4
 anElectron.cutBased_HEEP anElectron.ip3d anElectron.pdgId
 anElectron.cutBased_HLTPreSel anElectron.isPFcand anElectron.pfRelIso03_all
 anElectron.deltaEtaSC anElectron.jet anElectron.pfRelIso03_chg
 anElectron.dr03EcalRecHitSumEt anElectron.lostHits anElectron.phi
 anElectron.dr03HcalDepth1TowerSumEt anElectron.mass anElectron.photon
 anElectron.dr03TkSumPt anElectron.miniPFRelIso_all anElectron.pt
 anElectron.dxy anElectron.miniPFRelIso_chg anElectron.r9
 anElectron.dxyErr anElectron.mvaSpring16GP anElectron.sieie
 anElectron.dz anElectron.mvaSpring16GP_WP80 anElectron.sip3d
 anElectron.dzErr anElectron.mvaSpring16GP_WP90 anElectron.tightCharge
 anElectron.eCorr anElectron.mvaSpring16HZZ anElectron.vidNestedWPBitmap

For NanoAOD the content of the branches is documented here [https://cms-nanoaod-integration.web.cern.ch/autoDoc/].
More information about the central NanoAOD production campaigns is provided
here [https://gitlab.cern.ch/cms-nanoAOD/nanoaod-doc/-/wikis/home].

In addition to the branches present in the NanoAOD, the following attributes are added for convenience:

	p4 if pt, eta, phi, and mass attributes are defined. pt and mass are optional, such that this also works for TrigObj and various kinds of MET.

	idx for elements of containers

	for GenPart: parent, which refers to the parent or mother particle (the presence can be tested by comparing its idx to -1), and ancestors, the range of all ancestors—this does check the validity, so it may be empty.

Processing modes

The usual mode of operation is to 1. parse the analysis configuration file,
2. execute some code for every entry in each of the samples, and then 3. perform some
actions on the aggregated results (e.g. produce nice-looking plots from the raw histograms).
Since the second step is by far the most time-consuming, but can be performed
indepently for different samples (and even entries), it is modeled as a list of
tasks (which may be run in parallel), after which a postprocessing step takes
the results and combines them. The latter step can also be run separately, using
the results of previously run tasks, assuming these did not change.

More concretely, for e.g. histogram stack plots, the tasks produce histograms while
the postprocessing step runs plotIt [https://github.com/cp3-llbb/plotIt], so with the --onlypost option the
normalization, colors, labels etc. can be changed without reprocessing the
samples (some tips on additional postprocessing can be found in
this recipe).

The task processing itself can be run in three different modes, depending on the
option passed to --distributed:

By default (--distributed=sequential), every sample is processed sequentially.
This is useful for short tests or for small tasks that don’t take very long.
The execution can be made quicker by running in multithreaded mode using -t.

Alternatively, it is possible to process multiple tasks in parallel
using --distributed=parallel. This will first create the processing configuration
for every sample, before starting the actual processing.
Again, the executing of these tasks can be made to run on multiple threads using -t.

In practice, you will most likely want to submit independent tasks
to a computing cluster using a
batch scheduler (currently HTCondor and Slurm are supported).
Bamboo will submit the jobs, monitor them, and combine the results when they are finished.
More information about monitoring and recovering failed batch jobs is given in
the corresponding recipe.
By default one batch job is submitted for each input sample, unless there is
a split entry different from one for the sample, see
below for the precise meaning.

Finally, it is possible to offload the computations to a computing cluster using
modern distributed computing tools such as Dask or Spark.
This means that Dask/Spark will take care of splitting the input data, launching and monitoring jobs, and retrieving the results.
This mode can be activated using the --distrdf-be argument, and can work both with --distributed=sequential (in which case every sample will be processed sequentially by the whole cluster) or with --distributed=parallel (in which case the processing of all the input samples will happen in parallel).
More information about how to configure bamboo [https://bamboo-hep.readthedocs.io] for Dask/Spark can be found here.

Examples

Some more complete examples, based on open data
RDataFrame tutorials [https://root.cern/doc/master/group__tutorial__dataframe.html],
are available in
this repository [https://github.com/pieterdavid/bamboo-opendata-examples]
(they can be run on binder [https://mybinder.readthedocs.io/en/latest/]
without installing anything locally).

The recipes page has a collection of common analysis tasks,
with a recommended implementation, and pointers to the relevant helper functions;
it may good to skim through to get an idea of what a typical analysis
implementation will look like.

Building expressions

In order to efficiently process the input files, bamboo builds up an object representation
of the expressions (cuts, weights, plotted variables) needed to fill the histograms, and
dynamically generates C++ code that is passed to RDataFrame [https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html].
The expression trees are built up throug proxy classes, which mimic the final type (there are
e.g. integer and floating-point number proxy classes that overload the basic mathematical operators),
and generate a new proxy when called.
As an example: t.Muon[0].charge gives an integer proxy to the operation corresponding
to Muon_charge[0]; when the addition operator is called in t.Muon[0].charge+t.Muon[1].charge,
an integer proxy to (the object representation of) Muon_charge[0]+Muon_charge[1] is returned.

The proxy classes try to behave as much as possible as the objects they represent, so in most cases
they can be used as if they really were a number, boolean, momentum fourvector… or a muon,
electron, jet etc.—simple ‘struct’ types for those are generated when decorating the tree,
based on the branches that are found.
Some operations, however, cannot easily be implemented in this way, for instance mathematical functions and
operations on containers. Therefore, the bamboo.treefunctions module provides a set of
additional helper methods (such that the user does not need to know about the implementation details
in the bamboo.treeoperations and bamboo.treeproxies modules). In order to keep
the analysis code compact, it is recommended to import it with

from bamboo import treefunctions as op

inside every analysis module. The available functions are listed below.

List of functions

	
bamboo.treefunctions.typeOf(arg)

	Get the inferred C++ type of a bamboo expression (proxy or TupleOp)

	
bamboo.treefunctions.c_bool(arg)

	Construct a boolean constant

	
bamboo.treefunctions.c_int(num, typeName='int', cast=None)

	
	Construct an integer number constant (static_cast inserted automatically if not ‘int’,
	a boolean can be passed to ‘cast’ to force or disable this)

	
bamboo.treefunctions.c_float(num, typeName='double', cast=None)

	
	Construct a floating-point number constant (static_cast inserted automatically if not ‘double’,
	a boolean can be passed to ‘cast’ to force or disable this)

	
bamboo.treefunctions.NOT(sth)

	Logical NOT

	
bamboo.treefunctions.AND(*args)

	Logical AND

	
bamboo.treefunctions.OR(*args)

	Logical OR

	
bamboo.treefunctions.switch(test, trueBranch, falseBranch, checkTypes=True)

	Pick one or another value, based on a third one (ternary operator in C++)

	Example:

	

>>> op.switch(runOnMC, mySF, 1.) ## incomplete pseudocode

	
bamboo.treefunctions.multiSwitch(*args)

	Construct arbitrary-length switch (if-elif-elif-…-else sequence)

	Example:

	

>>> op.multiSwitch((lepton.pt > 30, 4.), (lepton.pt > 15 && op.abs(lepton.eta) < 2.1, 5.), 3.)

is equivalent to:

>>> if lepton.pt > 30:
>>> return 5.
>>> elif lepton.pt > 15 and abs(lepton.eta) < 2.1:
>>> return 4.
>>> else:
>>> return 3.

	
bamboo.treefunctions.extMethod(name, returnType=None)

	Retrieve a (non-member) C(++) method

	Parameters:

	
	name – name of the method

	returnType – return type (otherwise deduced by introspection)

	Returns:

	a method proxy, that can be called and
returns a value decorated as the return type of the method

	Example:

	

>>> phi_0_2pi = op.extMethod("ROOT::Math::VectorUtil::Phi_0_2pi")
>>> dphi_2pi = phi_0_2pi(a.Phi()-b.Phi())

	
bamboo.treefunctions.extVar(typeName, name)

	Use a variable or object defined outside bamboo

	Parameters:

	
	typeName – C++ type name

	name – name in the current scope

	Returns:

	a proxy to the variable or object

	
bamboo.treefunctions.construct(typeName, args)

	Construct an object

	Parameters:

	
	typeName – C++ type name

	args – constructor argumnts

	Returns:

	a proxy to the constructed object

	
bamboo.treefunctions.static_cast(typeName, arg)

	Compile-time type conversion

mostly for internal use, prefer higher-level functions where possible

	Parameters:

	
	typeName – C++ type to cast to

	arg – value to cast

	Returns:

	a proxy to the casted value

	
bamboo.treefunctions.initList(typeName, valueType, elements)

	Construct a C++ initializer list

mostly for internal use, prefer higher-level functions where possible

	Parameters:

	
	typeName – C++ type to use for the proxy (note that initializer lists do not have a type)

	valueType – C++ type of the elements in the list

	elements – list elements

	Returns:

	a proxy to the list

	
bamboo.treefunctions.array(valueType, *elements)

	Helper to make a constructing a std::array easier

	Parameters:

	
	valueType – array element C++ type

	elements – array elements

	Returns:

	a proxy to the array

	
bamboo.treefunctions.define(typeName, definition, nameHint=None)

	Define a variable as a symbol with the interpreter

	Parameters:

	
	typeName – result type name

	definition – C++ definition string, with <<name>> instead of the variable name
(which will be replaced by nameHint or a unique name)

	nameHint – (optional) name for the variable

Caution

nameHint (if given) should be unique (for the sample), otherwise an exception will be thrown

	
bamboo.treefunctions.defineOnFirstUse(sth)

	Construct an expression that will be precalculated (with an RDataFrame::Define node) when first used

This may be useful for expensive function calls, and should prevent double work in most cases.
Sometimes it is useful to explicitly insert the Define node explicitly, in that case
bamboo.analysisutils.forceDefine() can be used.

	
bamboo.treefunctions.abs(sth)

	Return the absolute value

	Example:

	

>>> op.abs(t.Muon[0].p4.Eta())

	
bamboo.treefunctions.sign(sth)

	Return the sign of a number

	Example:

	

>>> op.sign(t.Muon[0].p4.Eta())

	
bamboo.treefunctions.sum(*args, **kwargs)

	Return the sum of the arguments

	Example:

	

>>> op.sum(t.Muon[0].p4.Eta(), t.Muon[1].p4.Eta())

	
bamboo.treefunctions.product(*args)

	Return the product of the arguments

	Example:

	

>>> op.product(t.Muon[0].p4.Eta(), t.Muon[1].p4.Eta())

	
bamboo.treefunctions.sqrt(sth)

	Return the square root of a number

	Example:

	

>>> m1, m2 = t.Muon[0].p4, t.Muon[1].p4
>>> m12dR = op.sqrt(op.pow(m1.Eta()-m2.Eta(), 2) + op.pow(m1.Phi()-m2.Phi(), 2))

	
bamboo.treefunctions.pow(base, exp)

	Return a power of a number

	Example:

	

>>> m1, m2 = t.Muon[0].p4, t.Muon[1].p4
>>> m12dR = op.sqrt(op.pow(m1.Eta()-m2.Eta(), 2) + op.pow(m1.Phi()-m2.Phi(), 2))

	
bamboo.treefunctions.exp(sth)

	Return the exponential of a number

	Example:

	

>>> op.exp(op.abs(t.Muon[0].p4.Eta()))

	
bamboo.treefunctions.log(sth)

	Return the natural logarithm of a number

	Example:

	

>>> op.log(t.Muon[0].p4.Pt())

	
bamboo.treefunctions.log10(sth)

	Return the base-10 logarithm of a number

	Example:

	

>>> op.log10(t.Muon[0].p4.Pt())

	
bamboo.treefunctions.sin(sth)

	Return the sine of a number

	Example:

	

>>> op.sin(t.Muon[0].p4.Phi())

	
bamboo.treefunctions.cos(sth)

	Return the cosine of a number

	Example:

	

>>> op.cos(t.Muon[0].p4.Phi())

	
bamboo.treefunctions.tan(sth)

	Return the tangent of a number

	Example:

	

>>> op.tan(t.Muon[0].p4.Phi())

	
bamboo.treefunctions.asin(sth)

	Return the arcsine of a number

	Example:

	

>>> op.asin(op.c_float(3.1415))

	
bamboo.treefunctions.acos(sth)

	Return the arccosine of a number

	Example:

	

>>> op.ascos(op.c_float(3.1415))

	
bamboo.treefunctions.atan(sth)

	Return the arctangent of a number

	Example:

	

>>> op.atan(op.c_float(3.1415))

	
bamboo.treefunctions.max(a1, a2)

	Return the maximum of two numbers

	Example:

	

>>> op.max(op.abs(t.Muon[0].eta), op.abs(t.Muon[1].eta))

	
bamboo.treefunctions.min(a1, a2)

	Return the minimum of two numbers

	Example:

	

>>> op.min(op.abs(t.Muon[0].eta), op.abs(t.Muon[1].eta))

	
bamboo.treefunctions.in_range(low, arg, up)

	Check if a value is inside a range (boundaries excluded)

	Example:

	

>>> op.in_range(10., t.Muon[0].p4.Pt(), 20.)

	
bamboo.treefunctions.withMass(arg, massVal)

	Construct a Lorentz vector with given mass (taking the other components from the input)

	Example:

	

>>> pW = withMass((j1.p4+j2.p4), 80.4)

	
bamboo.treefunctions.invariant_mass(*args)

	Calculate the invariant mass of the arguments

	Example:

	

>>> mElEl = op.invariant_mass(t.Electron[0].p4, t.Electron[1].p4)

Note

Unlike in the example above, bamboo.treefunctions.combine()
should be used to make N-particle combinations in most practical cases

	
bamboo.treefunctions.invariant_mass_squared(*args)

	Calculate the squared invariant mass of the arguments using ROOT::Math::VectorUtil::InvariantMass2

	Example:

	

>>> m2ElEl = op.invariant_mass2(t.Electron[0].p4, t.Electron[1].p4)

	
bamboo.treefunctions.deltaPhi(a1, a2)

	Calculate the difference in azimutal angles (using ROOT::Math::VectorUtil::DeltaPhi)

	Example:

	

>>> elelDphi = op.deltaPhi(t.Electron[0].p4, t.Electron[1].p4)

	
bamboo.treefunctions.Phi_mpi_pi(a)

	Return an angle between -pi and pi

	
bamboo.treefunctions.Phi_0_2pi(a)

	Return an angle between 0 and 2*pi

	
bamboo.treefunctions.deltaR(a1, a2)

	Calculate the Delta R distance (using ROOT::Math::VectorUtil::DeltaR)

	Example:

	

>>> elelDR = op.deltaR(t.Electron[0].p4, t.Electron[1].p4)

	
bamboo.treefunctions.rng_len(sth)

	Get the number of elements in a range

	Parameters:

	rng – input range

	Example:

	

>>> nElectrons = op.rng_len(t.Electron)

	
bamboo.treefunctions.rng_sum(rng, fun=<function <lambda>>, start=None)

	Sum the values of a function over a range

	Parameters:

	
	rng – input range

	fun – function whose value should be used
(a callable that takes an element of the range and returns a number)

	start – initial value (0. by default)

	Example:

	

>>> totalMuCharge = op.rng_sum(t.Muon, lambda mu : mu.charge)

	
bamboo.treefunctions.rng_count(rng, pred=None)

	Count the number of elements passing a selection

	Parameters:

	
	rng – input range

	pred – selection predicate
(a callable that takes an element of the range and returns a boolean)

	Example:

	

>>> nCentralMu = op.rng_count(t.Muon, lambda mu : op.abs(mu.p4.Eta() < 2.4))

	
bamboo.treefunctions.rng_product(rng, fun=<function <lambda>>)

	Calculate the production of a function over a range

	Parameters:

	
	rng – input range

	fun – function whose value should be used
(a callable that takes an element of the range and returns a number)

	Example:

	

>>> overallMuChargeSign = op.rng_product(t.Muon, lambda mu : mu.charge)

	
bamboo.treefunctions.rng_max(rng, fun=<function <lambda>>)

	Find the highest value of a function in a range

	Parameters:

	
	rng – input range

	fun – function whose value should be used
(a callable that takes an element of the range and returns a number)

	Example:

	

>>> mostForwardMuEta = op.rng_max(t.Muon. lambda mu : op.abs(mu.p4.Eta()))

	
bamboo.treefunctions.rng_min(rng, fun=<function <lambda>>)

	Find the lowest value of a function in a range

	Parameters:

	
	rng – input range

	fun – function whose value should be used
(a callable that takes an element of the range and returns a number)

	Example:

	

>>> mostCentralMuEta = op.rng_min(t.Muon. lambda mu : op.abs(mu.p4.Eta()))

	
bamboo.treefunctions.rng_max_element_index(rng, fun=<function <lambda>>)

	Find the index of the element for which the value of a function is maximal

	Parameters:

	
	rng – input range

	fun – function whose value should be used
(a callable that takes an element of the range and returns a number)

	Returns:

	the index of the maximal element in the base collection if rng is a collection,
otherwise (e.g. if rng is a vector or array proxy) the index of the maximal element in rng

	Example:

	

>>> i_mostForwardMu = op.rng_max_element_index(t.Muon. lambda mu : op.abs(mu.p4.Eta()))

	
bamboo.treefunctions.rng_max_element_by(rng, fun=<function <lambda>>)

	Find the element for which the value of a function is maximal

	Parameters:

	
	rng – input range

	fun – function whose value should be used
(a callable that takes an element of the range and returns a number)

	Example:

	

>>> mostForwardMu = op.rng_max_element_by(t.Muon. lambda mu : op.abs(mu.p4.Eta()))

	
bamboo.treefunctions.rng_min_element_index(rng, fun=<function <lambda>>)

	Find the index of the element for which the value of a function is minimal

	Parameters:

	
	rng – input range

	fun – function whose value should be used
(a callable that takes an element of the range and returns a number)

	Returns:

	the index of the minimal element in the base collection if rng is a collection,
otherwise (e.g. if rng is a vector or array proxy) the index of the minimal element in rng

	Example:

	

>>> i_mostCentralMu = op.rng_min_element_index(t.Muon. lambda mu : op.abs(mu.p4.Eta()))

	
bamboo.treefunctions.rng_min_element_by(rng, fun=<function <lambda>>)

	Find the element for which the value of a function is minimal

	Parameters:

	
	rng – input range

	fun – function whose value should be used
(a callable that takes an element of the range and returns a number)

	Example:

	

>>> mostCentralMu = op.rng_min_element_by(t.Muon. lambda mu : op.abs(mu.p4.Eta()))

	
bamboo.treefunctions.rng_mean(rng)

	Return the mean of a range

	Parameters:

	rng – input range

	Example:

	

>>> pdf_mean = op.rng_mean(t.LHEPdfWeight)

	
bamboo.treefunctions.rng_stddev(rng)

	Return the (sample) standard deviation of a range

	Parameters:

	rng – input range

	Example:

	

>>> pdf_uncertainty = op.rng_stddev(t.LHEPdfWeight)

	
bamboo.treefunctions.rng_any(rng, pred=<function <lambda>>)

	Test if any item in a range passes a selection

	Parameters:

	
	rng – input range

	pred – selection predicate
(a callable that takes an element of the range and returns a boolean)

	Example:

	

>>> hasCentralMu = op.rng_any(t.Muon. lambda mu : op.abs(mu.p4.Eta()) < 2.4)

	
bamboo.treefunctions.rng_find(rng, pred=<function <lambda>>)

	Find the first item in a range that passes a selection

	Parameters:

	
	rng – input range

	pred – selection predicate
(a callable that takes an element of the range and returns a boolean)

	Example:

	

>>> leadCentralMu = op.rng_find(t.Muon, lambda mu : op.abs(mu.p4.Eta()) < 2.4)

	
bamboo.treefunctions.select(rng, pred=<function <lambda>>)

	Select elements from the range that pass a cut

	Parameters:

	
	rng – input range

	pred – selection predicate
(a callable that takes an element of the range and returns a boolean)

	Example:

	

>>> centralMuons = op.select(t.Muon, lambda mu : op.abs(mu.p4.Eta()) < 2.4)

	
bamboo.treefunctions.sort(rng, fun=<function <lambda>>)

	Sort the range (ascendingly) by the value of a function applied on each element

	Parameters:

	
	rng – input range

	fun – function by whose value the elements should be sorted

	Example:

	

>>> muonsByCentrality = op.sort(t.Muon, lambda mu : op.abs(mu.p4.Eta()))

	
bamboo.treefunctions.map(rng, fun, valueType=None)

	Create a list of derived values for a collection

This is useful for storing a derived quantity each item of a collection on a skim,
and also for filling a histogram for each entry in a collection.

	Parameters:

	
	rng – input range

	fun – function to calculate derived values

	valueType – stored return type
(optional, fun(rng[i]) should be convertible to this type)

	Example:

	

>>> muon_absEta = op.map(t.Muon, lambda mu : op.abs(mu.p4.Eta()))

	
bamboo.treefunctions.rng_pickRandom(rng, seed=0)

	Pick a random element from a range

	Parameters:

	
	rng – range to pick an element from

	seed – seed for the random generator

Caution

empty placeholder, to be implemented

	
bamboo.treefunctions.svFitMTT(MET, lepton1, lepton2, category)

	Calculate the mass of the reconstructed tau pair using the SVfit algorithm.
It employs the ClassicSVfit method.

	Parameters:

	
	MET – Missing transverse energy. It must include a covariance matrix.

	lepton1 – 1st lepton (e/mu/tau) from the tau pair.

	lepton2 – 2nd lepton (e/mu/tau) from the tau pair.

	category – Tau pair category. Only “1mu1tau,” “1ele1tau,” and “2tau” are supported.

Caution

This function works only if the SVfit package is installed.

	
bamboo.treefunctions.svFitFastMTT(MET, lepton1, lepton2, category)

	Calculate the four-vector of the reconstructed tau pair using the SVfit algorithm.
It employs the FastMTT method.

	Parameters:

	
	MET – Missing transverse energy. It must include a covariance matrix.

	lepton1 – 1st lepton (e/mu/tau) from the tau pair.

	lepton2 – 2nd lepton (e/mu/tau) from the tau pair.

	category – Tau pair category. Only “1mu1tau,” “1ele1tau,” and “2tau” are supported.

Caution

This function works only if the SVfit package is installed.

	
bamboo.treefunctions.combine(rng, N=None, pred=<function <lambda>>, samePred=<function <lambda>>)

	Create N-particle combination from one or several ranges

	Parameters:

	
	rng – range (or iterable of ranges) with basic objects to combine

	N – number of objects to combine (at least 2),
in case of multiple ranges it does not need to be given
(len(rng) will be taken; if specified they should match)

	pred – selection to apply to candidates
(a callable that takes the constituents and returns a boolean)

	samePred – additional selection for objects from the same base container
(a callable that takes two objects and returns a boolean,
it needs to be true for any sorted pair of objects
from the same container in a candidate combination).
The default avoids duplicates by keeping the indices (in the base container) sorted;
None will not apply any selection, and consider all combinations,
including those with the same object repeated.

	Example:

	

>>> osdimu = op.combine(t.Muon, N=2, pred=lambda mu1,mu2 : mu1.charge != mu2.charge)
>>> firstosdimu = osdimu[0]
>>> firstosdimu_Mll = op.invariant_mass(firstosdimu[0].p4, firstosdimu[1].p4)
>>> oselmu = op.combine((t.Electron, t.Muon), pred=lambda el,mu : el.charge != mu.charge)
>>> trijet = op.combine(t.Jet, N=3, samePred=lambda j1,j2 : j1.pt > j2.pt)
>>> trijet = op.combine(
>>> t.Jet, N=3, pred=lambda j1,j2,j3 : op.AND(j1.pt > j2.pt, j2.pt > j3.pt), samePred=None)

Note

The default value for samePred undoes the sorting that may have been
applied between the base container(s) and the argument(s) in rng.
The third and fourth examples above are equivalent, and show how to get
three-jet combinations, with the jets sorted by decreasing pT.
The latter is more efficient since it avoids the unnecessary comparison
j1.pt > j3.pt, which follows from the other two.
In that case no other sorting should be done, otherwise combinations
will only be retained if sorted by both criteria; this can be done by
passing samePred=None.

samePred=(lambda o1,o2 : o1.idx != o2.idx) can be used to get all
permutations.

	
bamboo.treefunctions.systematic(nominal, name=None, **kwargs)

	Construct an expression that will change under some systematic variations

This is useful when e.g. changing weights for some systematics. The expressions
for different variations are assumed (but not checked) to be of the same type, so
this should only be used for simple types (typically a number or a range of numbers);
containers etc. need to be taken into account in the decorators.

	Example:

	

>>> psWeight = op.systematic(tree.ps_nominal, name="pdf", up=tree.ps_up, down=tree.ps_down)
>>> addSys10percent = op.systematic(
>>> op.c_float(1.), name="additionalSystematic1", up=op.c_float(1.1), down=op.c_float(0.9))
>>> importantSF = op.systematic(op.c_float(1.),
 mySF_systup=op.c_float(1.1), mySF_systdown=op.c_float(0.9),
 mySF_statup=1.04, mySF_statdown=.97)

	Parameters:

	
	nominal – nominal expression

	kwargs – alternative expressions.
“up” and “down” (any capitalization) will be prefixed with name, if given

	name – optional name of the systematic uncertainty source to prepend to “up” or “down”

	
bamboo.treefunctions.getSystematicVariations(expr)

	Get the list of systematic variations affecting an expression

	
bamboo.treefunctions.forSystematicVariation(expr, varName)

	Get the equivalent expression with a specific systematic uncertainty variation

	Parameters:

	
	expr – an expression (or proxy)

	varName – name of the variation (e.g. jesTotalup)

	Returns:

	the expression for the chosen variation (frozen, so without variations)

	
class bamboo.treefunctions.MVAEvaluator(evaluate, returnType=None, toArray=False, toVector=True, useSlots=False)

	Small wrapper to make sure MVA evaluation is cached

	
bamboo.treefunctions.mvaEvaluator(fileName, mvaType=None, otherArgs=None, nameHint=None)

	Declare and initialize an MVA evaluator

The C++ object is defined (with bamboo.treefunctions.define()),
and can be used as a callable to evaluate.
The result of any evaluation will be cached automatically.

Currently the following formats are supported:

	.xml (mvaType='TMVA') TMVA weights file, evaluated with a TMVA::Experimental::RReader

	.pt (mvaType='Torch') pytorch script files (loaded with torch::jit::load).

	
	.pb (mvaType='Tensorflow') tensorflow graph definition (loaded with Tensorflow-C).
	The otherArgs keyword argument should be (inputNodeNames, outputNodeNames), where each
of the two can be a single string, or an iterable of them.
In the case of multiple input nodes, the input values for each
should also be passed as separate arguments when evaluating (see below).
Input values for multi-dimensional nodes should be flattened
(row-order per node, and then the different nodes).
The output will be flattened in the same way if the output node has
more than one dimension, or if there are multiple output nodes.

	.json (mvaType='lwtnn') lwtnn json. The otherArgs keyword argument should be passed
the lists of input and output nodes/values, as C++ initializer list strings, e.g.
'{ { "node_0", "variable_0" }, { "node_0", "variable_1" } ... }' and
'{ "out_0", "out_1" }'.

	.onnx (mvaType='ONNXRuntime') ONNX file, evaluated with ONNX Runtime.
The otherArgs keyword argument should the name of the output node (or a list of those)

	.hxx (mvaType='SOFIE') ROOT SOFIE generated header file
The otherArgs keyword argument should be the path to the .dat weights file (if not specified,
it will taken by replacing the weight file extension from .hxx to .dat).
Note: only available in ROOT>=6.26.04.

	Parameters:

	
	fileName – file with MVA weights and structure

	mvaType – type of MVA, or library used to evaluate it (Tensorflow, Torch, or lwtnn).
If absent, this is guessed from the fileName extension

	otherArgs – other arguments to construct the MVA evaluator
(either as a string (safest), or as an iterable)

	nameHint – name hint, see bamboo.treefunctions.define()

	Returns:

	a proxy to a method that takes the inputs as arguments,
and returns a std::vector<float> of outputs

For passing the inputs to the evaluator, there are two options

	if a list of numbers is passed, as in the example below,
they will be converted to an array of float (with a static_cast).
The rationale is that this is the most common simple case,
which should be made as convenient as possible.

	if the MVA takes inputs in a different type than float or has multiple
input nodes (supported for Tensorflow and ONNX Runtime), an array-like
object of the correct type should be passed for each of the input nodes.
No other conversions will be automatically inserted, so these should be
done when constructing the inputs (e.g. with array() and
initList())).
This is a bit more work, but gives maximal control over the generated code.

	Example:

	

>>> mu = tree.Muon[0]
>>> nn1 = mvaEvaluator("nn1.pt")
>>> Plot.make1D("mu_nn1", nn1(mu.pt, mu.eta, mu.phi), hasMu)

Warning

By default the MVA output will be added as a column
(Define node in the RDataFrame graph) when used, because it is
almost always more efficient. In some cases, e.g. if the MVA should only
be evaluated if some condition is true, this can cause problems.
To avoid this, defineOnFirstUse=False should be passed when calling
the evaluation, e.g.
nn1(mu.pt, mu.eta, mu.phi, defineOnFirstUse=False) in the example
above.

Recipes for common tasks

Using scalefactors

Scalefactors—CMS jargon for efficiency corrections for MC, typically
binned in lepton or jet kinematic variables—can be generalized to
functions that take some properties of a physics object and return a single
floating-point number.
The bamboo.scalefactors module provides support for constructing
such callable objects from two different JSON formats, the CMS correctionlib [https://github.com/cms-nanoAOD/correctionlib/]
format, and the one used in the CP3-llbb framework [https://github.com/cp3-llbb/Framework], and the CMS BTV CSV
format.

CMS correctionlib JSON format

The bamboo.scalefactors.get_correction() method loads a Correction
from the CorrectionSet stored in a JSON file, and constructs a helper object
to use it in bamboo.
Since corrections are usually parameterised as function of e.g. kineamtic
properties of a reconstructed object, callables can be passed as parameters,
and the helper object called with a reconstructed object, e.g.

from bamboo.scalefactors import get_correction
sf = get_correction(..., params={"pt": lambda obj : obj.pt, ...})
mySel = noSel.refine(..., weight=sf(el))

Many of the arguments to bamboo.scalefactors.get_correction() are
related to automatic systematic uncertainties: the name of a category axis in
the Correction, the mapping between its categories and systematic variations
in bamboo, and the name of the nominal category—more details and
a complete example can be found in the reference documentation.
Please note that this needs the correctionlib package to be installed, see
the installation guide for more details.

Helper methods to configure and combine individual corrections for the purpose
of applying b-tagging scale factor and uncertainties are provided, see
bamboo.scalefactors.makeBtagWeightMeth1a() and
bamboo.scalefactors.makeBtagWeightItFit().

CP3-llbb JSON format

Warning

The CP3-llbb json format and associated Bamboo functionalities
are soon going to be deprecated in favour of the central JSON format
and correctionlib (see above).

The bamboo.scalefactors module provides support for constructing
such callable objects from the JSON format used in the CP3-llbb framework [https://github.com/cp3-llbb/Framework],
see some examples
here [https://github.com/cp3-llbb/Framework/tree/CMSSW_8_0_6p/data/ScaleFactors]
(these JSON files are produced from the txt or ROOT files provided by the POGs
using simple python
scripts [https://github.com/cp3-llbb/Framework/tree/CMSSW_8_0_6p/scripts]).
Like their inputs, the JSON files contain the nominal scale factor as well as
its up and down systematic variations, so the
ScaleFactor behaves as a callable that takes
a physics object and an optional variation keyword argument (technically,
it wraps a C++ object that gets the correct value from the JSON file).

The get_scalefactor() method constructs such
objects from a nested dictionary:
the first key is a tag (as an example: “electron_2015_76”, for electrons in
2015 data, analysed with a CMSSW_7_6_X release) and the second key is an
identifier of the selection they correspond to (e.g. id_Loose).
The value inside this dictionary can be either a single path to a JSON file,
or a list of (periods, path) pairs, where periods is a list of run periods, in case scalefactors for different
running periods need to be combined (the periods keyword argument to
get_scalefactor() can be used to select only
a certain set of these periods).
The combination is done by either weighting or randomly sampling from the
different periods, according to the fraction of the integrated luminosity in
each (by passing combine="weight" or combine="sample", respectively).
Jet flavour tagging and dilepton (e.g. trigger) scalefactors can also be
specified by passing tuples of the light, c-jet and b-jet scalefactor paths,
and tuples of first-if-leading, first-if-subleading, second-if-leading,
and second-if-subleading (to be reviewed for NanoAOD) scalefactor paths,
respectively, instead of a single path.

Histogram variations representing the shape systematic uncertainty due to an
uncertainty on the scalefactor values can be automatically produced by passing
a name to the systName keyword argument of the
get_scalefactor() method.

As an example, some basic lepton ID and jet tagging scalefactors could be
included in an analysis on NanoAOD by defining

import bamboo.scalefactors
from itertools import chain
import os.path

scalefactor JSON files are in ScaleFactors/<era>/ alongside the module
def localize_myanalysis(aPath, era="2016legacy"):
 return os.path.join(os.path.dirname(os.path.abspath(__file__)), "ScaleFactors", era, aPath)

nested dictionary with path names of scalefactor JSON files
{ tag : { selection : absole-json-path } }
myScalefactors = {
 "electron_2016_94" : {
 "id_Loose" : localize_myanalysis("Electron_EGamma_SF2D_Loose.json")
 "id_Medium" : localize_myanalysis("Electron_EGamma_SF2D_Medium.json")
 "id_Tight" : localize_myanalysis("Electron_EGamma_SF2D_Tight.json")
 },
 "btag_2016_94" : dict((k, (tuple(localize_myanalysis(fv) for fv in v))) for k,v in dict(
 ("{algo}_{wp}".format(algo=algo, wp=wp),
 tuple("BTagging_{wp}_{flav}_{calib}_{algo}.json".format(wp=wp, flav=flav, calib=calib, algo=algo)
 for (flav, calib) in (("lightjets", "incl"), ("cjets", "comb"), ("bjets","comb")))
) for wp in ("loose", "medium", "tight") for algo in ("DeepCSV", "DeepJet")).items())
 }

fill in some defaults: myScalefactors and bamboo.scalefactors.binningVariables_nano
def get_scalefactor(objType, key, periods=None, combine=None, additionalVariables=None, systName=None):
 return bamboo.scalefactors.get_scalefactor(objType, key, periods=periods, combine=combine,
 additionalVariables=(additionalVariables if additionalVariables else dict()),
 sfLib=myScalefactors, paramDefs=bamboo.scalefactors.binningVariables_nano, systName=systName)

and adding the weights to the appropriate Selection
instances with

electrons = op.select(t.Electron, lambda ele : op.AND(ele.cutBased >= 2, ele.p4.Pt() > 20., op.abs(ele.p4.Eta()) < 2.5))
elLooseIDSF = get_scalefactor("lepton", ("electron_2016_94", "id_Loose"), systName="elID")
hasTwoEl = noSel.refine("hasTwoEl", cut=[op.rng_len(electrons) > 1],
 weight=[elLooseIDSF(electrons[0]), elLooseIDSF(electrons[1])])

jets = op.select(t.Jet, lambda j : j.p4.Pt() > 30.)
bJets = op.select(jets, lambda j : j.btagDeepFlavB > 0.2217) ## DeepFlavour loose b-tag working point
deepFlavB_discriVar = { "BTagDiscri": lambda j : j.btagDeepFlavB }
deepBLooseSF = get_scalefactor("jet", ("btag_2016_94", "DeepJet_loose"), additionalVariables=deepFlavB_discriVar, systName="bTag")
hasTwoElTwoB = hasTwoEl.refine("hasTwoElTwoB", cut=[op.rng_len(bJets) > 1],
 weight=[deepBLooseSF(bJets[0]), deepBLooseSF(bJets[1])])

Note that the user is responsible for making sure that the weights are only applied to simulated events, and not to real data!

CMS BTV CSV format

Warning

The BTV CSV reader and associated Bamboo functionalities
are soon going to be deprecated in favour of the central JSON format
and correctionlib (see above).

The bamboo.scalefactors.BtagSF class wraps the
BTagCalibrationReader provided by the BTV POG to read the custom CSV
format for b-tagging scalefactors (more details usage instructions can be
found in the reference documentation).
Please note that this will only read the scalefactors, which for most
methods for applying b-tagging scalefactors [https://twiki.cern.ch/twiki/bin/viewauth/CMS/BTagSFMethods]
need to be combined with efficiency and mistag probability maps measured
in simulation in the analysis phase space.

Pileup reweighting

Warning

The pileup weights maker and associated Bamboo functionalities
are soon going to be deprecated in favour of the central JSON format
and correctionlib (see above).

Pileup reweighting to make the pileup distribution in simulation match the one
in data is very similar to applying a scalefactor, except that the efficiency
correction is for the whole event or per-object—so the same code can be
used.
The makePUReWeightJSON script included in bamboo can be used to make
a JSON file with weights out of a data pileup profile obtained by running
pileupcalc.py
(inside CMSSW, see the pileupcalc documentation [https://twiki.cern.ch/twiki/bin/viewauth/CMS/PileupJSONFileforData#Pileup_JSON_Files_For_Run_II] for details), e.g. with
something like

pileupCalc.py -i ~/Cert_271036-284044_13TeV_23Sep2016ReReco_Collisions16_JSON.txt --inputLumiJSON /afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions16/13TeV/PileUp/pileup_latest.txt --calcMode true --minBiasXsec 69200 --maxPileupBin 80 --numPileupBins 80 ./2016PUHist_nominal.root

and a MC pileup profile.
Data pileup distributions corresponding to the golden JSON files for Run 2 are
provided by the luminosity POG, see
this hypernews annoncement [https://hypernews.cern.ch/HyperNews/CMS/get/physics-validation/3374/2.html].
The MC pileup profiles for used official CMSSW productions are
currently hardcoded inside the makePUReWeightJSON, and can be specified
by their tag or name in that list; the available tags can be listed by
specifying the --listmcprofiles option. The full command then becomes
something like

makePUReWeightJSON --mcprofile "Moriond17_25ns" --nominal=2016PUHist.root --up=2016PUHist_up.root --down=2016PUHist_down.root --makePlot

To include the weight when filling plots, it is sufficient to add the weight to
a selection (usually one of the topmost in the analysis, e.g. in the
prepareTree method of the analysis module).
The bamboo.analysisutils.makePileupWeight() method can be used to build
an expression for the weight, starting from the path of the JSON file with
weights from above, and an expression for the true number of interactions in the
event (mean of the Poissonian used), e.g. tree.Pileup_nTrueInt for NanoAOD.

Cleaning collections

The CMS reconstruction sometimes ends up double-counting some objects.
This can be because of the different quality criteria used to identify each
object or because of the different performance and inner working of
the reconstruction algorithms.
Tau reconstruction for example operates on clusters that are usually
reconstructed as jets, and on top of that it can easily pick up even isolated
muons or electrons as taus (i.e. as clusters of energy with one, two, or three
tracks).

It is oftentimes necessary therefore to clean a collection of objects by
excluding any object that is spatially in the sample place of another object
whose reconstruction we trust more.

We trust more muon and electron reconstrution than tau reconstruction,
after all the quality cuts (ID efficiencies for muons and electrons are around
99.X%, whereas tau ID efficiencies are of the order of 70%.
Misidentification rates are similarly quite different), and therefore we exclude
from the tau collection any tau that happens to include within its
reconstruction cone a muon or an electron.

Bamboo provides a handy syntax for that, resulting in something like

cleanedTaus = op.select(taus, lambda it : op.AND(
 op.NOT(op.rng_any(electrons, lambda ie : op.deltaR(it.p4, ie.p4) < 0.3)),
 op.NOT(op.rng_any(muons, lambda im : op.deltaR(it.p4, im.p4) < 0.3))
))

In this example, we assume that the collections taus, electrons, and
muons, have already been defined via
taus = op.select(t.Tau, lambda tau : ...), and we move on to use the method
op.rng_any() to filter all taus that are within a cone of a given size
(0.3, in the example) from any selected electron or muon.

Jet and MET systematics

For propagating uncertainties related to the jet energy calibration, and the
difference in jet energy resolution between data and simulation, each jet in
the reconstructed jet collection should be modified, the collection sorted,
and any derived quantity re-evaluated.

How to do this depends on the input trees: in production NanoAOD the modified
momenta need to be calculated using the jet energy correction parameters; it is
also possible to add them when post-processing with the
jetmetUncertainties module [https://github.com/cms-nanoAOD/nanoAOD-tools/blob/master/python/postprocessing/modules/jme/jetmetUncertainties.py] of the NanoAODTools [https://github.com/cms-nanoAOD/nanoAOD-tools] package.
In the latter case the NanoAOD decoration method will pick up the modified
branches if an appropriate
NanoSystematicVarSpec entry (e.g.
nanoReadJetMETVar or
nanoReadJetMETVar_METFixEE2017) is added to
the systVariations attribute of the
NanoAODDescription that is passed to the
prepareTree() (or
decorateNanoAOD()) method.

To calculate the variations on the fly, two things are needed: when decorating
the tree, some redirections should be set up to pick up the variations from a
calculator module, and then this module needs to be configured with the correct
JEC and resolution parameters.
The first step can be done by adding
nanoJetMETCalc (or
nanoJetMETCalc_METFixEE2017) to the
systVariations attribute of the
NanoAODDescription that is passed to the
prepareTree() method (which will
pass this to the decorateNanoAOD() method);
these will also make sure that all these variations are propagated to the
missing transverse momentum.
Next, a calculator must be added and configured.
This can be done with the bamboo.analysisutils.configureJets() and
bamboo.analysisutils.configureType1MET() methods, which provide a
convenient way to correct the jet resolution in MC, apply a different JEC, and
add variations due to different sources of uncertainty in the jet energy scale,
for the jet collection and MET, respectively (the arguments should be the same
in most cases).

Note

The jet and MET calculators were moved to a separate package.
Since these calculators are C++ classes with an RDF-friendly interface and
minimal dependencies, they are not only useful from bamboo, but also from
other (RDF-based or similar) frameworks.
Therefore they were moved to a separate repository
cp3-cms/CMSJMECalculators [https://gitlab.cern.ch/cp3-cms/CMSJMECalculators.git].
They can be installed with e.g.
pip install git+https://gitlab.cern.ch/cp3-cms/CMSJMECalculators.git.

As an example, the relevant code of a NanoAOD analysis module could
look like this to apply a newer JEC to 2016 data and perform smearing, add
uncertainties to 2016 MC, and the same for the MET:

class MyAnalysisModule(NanoAODHistoModule):
 def prepareTree(self, tree, sample=None, sampleCfg=None):
 tree,noSel,be,lumiArgs = super(MyAnalysisModule, self).prepareTree(tree, sample=sample, sampleCfg=sampleCfg
 , NanoAODDescription.get("v5", year="2016", isMC=self.isMC(sample), systVariations=[nanoJetMETCalc]))
 from bamboo.analysisutils import configureJets, configureType1MET
 isNotWorker = (self.args.distributed != "worker")
 era = sampleCfg["era"]
 if era == "2016":
 if self.isMC(sample): # can be inferred from sample name
 configureJets(tree._Jet, "AK4PFchs",
 jec="Summer16_07Aug2017_V20_MC",
 smear="Summer16_25nsV1_MC",
 jesUncertaintySources=["Total"],
 mayWriteCache=isNotWorker,
 isMC=self.isMC(sample), backend=be)
 configureType1MET(tree._MET,
 jec="Summer16_07Aug2017_V20_MC",
 smear="Summer16_25nsV1_MC",
 jesUncertaintySources=["Total"],
 mayWriteCache=isNotWorker,
 isMC=self.isMC(sample), backend=be)
 else:
 if "2016G" in sample or "2016H" in sample:
 configureJets(tree._Jet, "AK4PFchs",
 jec="Summer16_07Aug2017GH_V11_DATA",
 mayWriteCache=isNotWorker,
 isMC=self.isMC(sample), backend=be)
 configureType1MET(tree._MET,
 jec="Summer16_07Aug2017GH_V11_DATA",
 mayWriteCache=isNotWorker,
 isMC=self.isMC(sample), backend=be)
 elif ...: ## other 2016 periods
 pass

 return tree,noSel,be,lumiArgs

Both with variations read from a postprocessed NanoAOD and calculated on the
fly, the different jet collections are available from t._Jet, e.g.
t._Jet["nom"] (postprocessed) or t._Jet["nominal"] (calculated),
t._Jet["jerup"], t._Jet["jerdown"], t._Jet["jesTotalUp"],
t._Jet["jesTotalDown"] etc. depending on the configured variations
(when accessing these directly, t._Jet[variation][j.idx] should be used
to retrieve the entry corresponding to a specific jet j, if the latter is
obtained from a selected and/or sorted version of the original collection—object.idx is always the index in the collection as found in the tree).

t.Jet will be changed for one of the above for each systematic variation,
if it affects a plot, in case automatically producing the systematic variations
is enabled (the collections from t._Jet will not be changed).
The automatic calculation of systematic variations can be disabled globally
or on a per-selection basis (see above), and for on the fly calculation also by
passing enableSystematics=[] to
bamboo.analysisutils.configureJets()).
The jet collection as stored on the input file, finally, can be retrieved as
t._Jet.orig.

Important

Sorting the jets
No sorting is done as part of the above procedure, so if relevant this
should be added by the user (e.g. using
jets = op.sort(t.Jet, lambda j : -j.pt) for sorting by decreasing
transverse momentum).
In a previous version of the code this was included, but since some selection
is usually applied on the jets anyway, it is simpler (and more efficient) to
perform the sorting then.

Important

Bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] runs outside CMSSW and has no access to the conditions
database, so it fetches the necessary txt files from the repositories
on github (they are quite large, so this is more efficient than storing
a clone locally). They can be automatically updated if the upstream
repository changes; the mayWriteCache argument to
bamboo.analysisutils.configureJets() (see the example above)
helps ensure that only one process write to the cache at a time.
In practice, updating the local cache when the corrections have changed
can be done by running an analysis module once in non-distributed mode
using the –onlyprepare –maxFiles 1 arguments.
In case of doubt one can use the checkCMSJMEDatabaseCaches script
to update or check the cache interactively and, as a last resort, remove
the cache directories and status files from ~/.bamboo/cache:
they will be recreated automatically at the next use.

Note

Isn’t it slow to calculate jet corrections on the fly?
It does take a bit of time, but the calculation is done in one C++ module,
which should not be executed more than once per event (see the explanation
of the bamboo.analysisutils.forceDefine() method in the
section above).
In most realistic cases, the bottleneck is in reading and decompressing the
input files, so the performance hit from the jet corrections should usually
be acceptable.

Rochester correction for muons

The so-called
Rochester correction [https://twiki.cern.ch/twiki/bin/viewauth/CMS/RochcorMuon]
removes a bias in the muon momentum, and improves the agreement between data
and simulation in the description of the Z boson peak.
As for the jet correction and variations described in the previous section,
this can either be done during postprocessing, with the
muonScaleResProducer module [https://github.com/cms-nanoAOD/nanoAOD-tools/blob/master/python/postprocessing/modules/common/muonScaleResProducer.py] of the NanoAODTools [https://github.com/cms-nanoAOD/nanoAOD-tools] package, or on the fly.
To adjust the decorators, a suitable
NanoSystematicVarSpec instance to read the
corrected values, or nanoRochesterCalc to use
the calculated values, should be added to the systVariations
attribute of the NanoAODDescription that is
passed to the prepareTree() (or
decorateNanoAOD()) method.

The on the fly calculator should be added and configured with the
bamboo.analysisutils.configureRochesterCorrection() method,
as in the example below.
tree._Muon keeps track of everything related to the calculator; the
uncorrected muon collection can be found in tree._Muon.orig, and the
corrected muons are in tree.Muon.

class MyAnalysisModule(NanoAODHistoModule):
 def prepareTree(self, tree, sample=None, sampleCfg=None):
 tree,noSel,be,lumiArgs = NanoAODHistoModule.prepareTree(self, tree, sample=sample, sampleCfg=sampleCfg, calcToAdd=["nMuon"])
 from bamboo.analysisutils import configureRochesterCorrection
 era = sampleCfg["era"]
 if era == "2016":
 configureRochesterCorrection(tree._Muon, "RoccoR2016.txt", isMC=self.isMC(sample), backend=be)
 return tree,noSel,be,lumiArgs

Energy correction for taus

Similar to muons, the energy of taus also requires correction. This can be done
on the fly. To adjust the decorators, nanoTauESCalc to use
the calculated values, should be added to the systVariations
attribute of the NanoAODDescription that is
passed to the prepareTree() (or
decorateNanoAOD()) method.

The on the fly calculator should be added and configured with the
bamboo.analysisutils.configureTauESCorrection() method,
as in the example below.
tree._Tau keeps track of everything related to the calculator; the
uncorrected tau collection can be found in tree._Tau.orig, and the
corrected taus are in tree.Tau.

class MyAnalysisModule(NanoAODHistoModule):
 def prepareTree(self, tree, sample=None, sampleCfg=None):
 tree,noSel,be,lumiArgs = NanoAODHistoModule.prepareTree(self, tree, sample=sample, sampleCfg=sampleCfg, calcToAdd=["nTau"])
 from bamboo.analysisutils import configureTauESCorrection
 era = sampleCfg["era"]
 if era == "2016":
 configureTauESCorrection(tree._Tau, "tau2016.json.gz", tauIdAlgo="DeepTau2017v2p1", backend=be)
 return tree,noSel,be,lumiArgs

Correlating systematic variations

To understand how systematic variations are implemented in bamboo, and how to
take advantage of that to correlate e.g. a b-tagging scalefactor variation with
a jet and MET kinematic variation, it is useful to remember that your code
creates expressions that are converted to C++ code, and
imagine a variable with a systematic uncertainty as a single nominal value with
a dictionary of alternative values: the keys of this dictionary are the
variation names, e.g. elIDup or jerdown.
This is also how they are represented in the expression objects tree.
When creating a plot or selection, the variable(s), weight(s), and cut(s) are
scanned for such nodes with systematic variations, and additional RDataFrame
nodes are created for all the variations.

There are two interesting consequences of the this dictionary with variations:
all variations are equal, i.e. there is no concept of “uncertainty X with
e.g. up and down variations”—although this is very common in practice, and
trivial to reconstruct from the dictionary where needed—and all expression
nodes with the same variation change together.
The latter is necessary in many cases, e.g. when passing the MET and some jet
pt’s to a multivariate classifier, both should pass the jerdown variation
to get the corresponding variation of the classifier output.
It also provides a very transparent way to correlate variations: if the name is
the same, they will be simultaneously varied—so it is enough that
a b-tagging scalefactor variation is called jesAbsup to be varied together
with that variation of the jet pt’s; turning that around: to be varied
independently, the names must be made different (this is why up and down
by themselves as variation names lead to an error message being printed).

Splitting a sample into sub-components

It is frequently necessary to split a single Monte-Carlo sample into different processes, depending on generator-level information, or simply to add some cuts at generator level (e.g. to stitch binned samples together).
This can be achieved by duplicating that sample in the analysis configuration file for as many splits as are needed, and putting (any) additional information into that sample’s entry, e.g. as:

ttbb:
 db: das:/TTToSemiLeptonic_TuneCP5_13TeV-powheg-pythia8/RunIIAutumn18NanoAODv5-Nano1June2019_102X_upgrade2018_realistic_v19-v1/NANOAODSIM
 era: 2018
 group: ttbb
 subprocess: ttbb
 cross-section: 366.
 generated-events: genEventSumw

ttjj:
 db: das:/TTToSemiLeptonic_TuneCP5_13TeV-powheg-pythia8/RunIIAutumn18NanoAODv5-Nano1June2019_102X_upgrade2018_realistic_v19-v1/NANOAODSIM
 era: 2018
 group: ttjj
 subprocess: ttjj
 cross-section: 366.
 generated-events: genEventSumw

That information can then be retrieved in the analysis module through the sampleCfg keyword argument, to add additional cuts to the selection when preparing the tree:

def prepareTree(self, tree, sample=None, sampleCfg=None):
 tree,noSel,be,lumiArgs = super(MyAnalysisModule, self).prepareTree(tree, sample=sample, sampleCfg=sampleCfg)

 if "subprocess" in sampleCfg:
 subProc = sampleCfg["subprocess"]
 if subProc == "ttbb":
 noSel = noSel.refine(subProc, cut=(tree.genTtbarId % 100) >= 52)
 elif subProc == "ttjj":
 noSel = noSel.refine(subProc, cut=(tree.genTtbarId % 100) < 41)

 return tree,noSel,be,lumiArgs

Adding command-line arguments

The base analysis module,
bamboo.analysismodules.AnalysisModule, calls the
addArgs() method (the default
implementation does nothing) when constructing the command-line arguments
parser (using the argparse [https://docs.python.org/3/library/argparse.html] module).
Analysis modules can reimplement this method to specify more arguments, e.g.

class MyModule(...):

 def addArgs(self, parser):
 super(MyModule, self).addArgs(parser)
 parser.add_argument("--whichPlots", type=str,
 default="control",
 help="Set of plots to produce")

The parsed arguments are available under the args member variable, e.g.
self.args.whichPlots in the example above.
The complete list of command-line options (including those specified in the
analysis module) can be printed with bambooRun -h -m myModule.py.MyModule.
In fact the parser argument is an
argument group [https://docs.python.org/3/library/argparse.html#argument-groups],
so they are listed separately from those in the base class.
This is also used to copy all user-defined arguments to the commands that are
passed to the worker tasks, when running in distributed mode.

Editing the analysis configuration

Similarly to the above, it is possible to modify the analysis configuration
(loaded from the YAML file) from a module before the configuration
is used to create jobs (in distributed mode), run on any file (in sequential mode),
or run plotIt (in the postprocessing step).
This allows e.g. to change the samples that are going to be used, change the list
of systematics, etc., without having to edit manually the YAML file or maintaining separate files.
Below is an example of how this works:

class MyModule(...):

 def customizeAnalysisCfg(self, analysisCfg):
 for smp in list(analysisCfg["samples"]):
 if not analysisCfg["samples"][smp].get("is_signal", False):
 del analysisCfg["samples"][smp]

Evaluate an MVA classifier

Several external libraries can be used to evaluate the response of MVA
classifiers inside expressions.
For convenience, a uniform interface is defined that uses a vector of floats
as input and output, with implementations available for PyTorch [https://pytorch.org/],
Tensorflow [https://www.tensorflow.org/], lwtnn [https://github.com/lwtnn/lwtnn], TMVA [https://root.cern/manual/tmva/], ONNX Runtime [https://www.onnxruntime.ai], and SOFIE [https://root.cern/doc/v626/release-notes.html#sofie-code-generation-for-fast-inference-of-deep-learning-models].
That works as follows (see the documentation for the
bamboo.treefunctions.mvaEvaluator() method for a detailed description,
additional options may be needed, depending on the type):

mu = tree.Muon[0]
nn1 = mvaEvaluator("nn1.pt", mvaType="Torch")
Plot.make1D("mu_nn1", nn1(mu.pt, mu.eta, mu.phi), hasMu)

For Tensorflow, PyTorch, and ONNX Runtime multiple inputs (and inputs with
different types) are also supported.
In that case, no automatic conversion is performed, so the inputs should be
passed in the correct format (most of the time the number of inputs per node
is known, so arrays constructed with bamboo.treefunctions.array()
are a good choice).

Warning

Especially for PyTorch [https://pytorch.org/] and Tensorflow [https://www.tensorflow.org/], setting up an
installation where the necessary C(++) libraries are correctly identified,
and compatible with the CPU capabilities, is not always trivial. See
this section in the installation guide for
more information.

Skims for training a classifier can also straightforwardly
be produced with bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html].

Obtaining a classifier in the right format

All MVA inference is done through the C(++) APIs provided by the different
machine learning and inference libraries, which means that the model should
be stored in the appropriate format (often with some conversion step).

ONNX [https://onnx.ai] and lwtnn [https://github.com/lwtnn/lwtnn] are formats for the exchange and inference of neural networks,
so they need converters from the model building and/or training framework.
Converting Keras [https://keras.io] models to lwtnn [https://github.com/lwtnn/lwtnn] is described on the lwtnn wiki [https://github.com/lwtnn/lwtnn/wiki/Keras-Converter].
PyTorch [https://pytorch.org/] comes with
ONNX export [https://pytorch.org/docs/stable/onnx.html] included.
Most Keras [https://keras.io] models can also easily be exporter to ONNX [https://onnx.ai] with keras2onnx [https://github.com/onnx/keras-onnx].

The PyTorch [https://pytorch.org/] evaluator uses TorchScript [https://pytorch.org/docs/stable/jit.html],
this tutorial [https://pytorch.org/tutorials/advanced/cpp_export.html#step-1-converting-your-pytorch-model-to-torch-script]
is a very good starting point if your model is trained with PyTorch [https://pytorch.org/].

TMVA [https://root.cern/manual/tmva/] uses an XML format which probably also just works.
The TMVA reader will work with multi-threading, but the
reader class [https://root.cern/doc/master/classTMVA_1_1Experimental_1_1RReader.html]
uses locking because the internal TMVA classes are not thread-safe,
so performance will be degraded if aggressive multi-threading is used and
the TMVA evaluation dominates the CPU usage.

For Keras [https://keras.io] models Tensorflow [https://www.tensorflow.org/] is the most natural fit. Please note that the
frozen graph is needed, see e.g.
keras_to_tensorflow [https://github.com/amir-abdi/keras_to_tensorflow],
this detailed explanation [https://medium.com/@sebastingarcaacosta/how-to-export-a-tensorflow-2-x-keras-model-to-a-frozen-and-optimized-graph-39740846d9eb],
and this script [https://github.com/FlorianBury/HHbbWWAnalysis/blob/master/MachineLearning/HHMachineLearning/KerasToTensorflowModel.py]
for an example of how to do so.

SOFIE [https://root.cern/doc/v626/release-notes.html#sofie-code-generation-for-fast-inference-of-deep-learning-models] allows one to evaluate models in ONNX [https://onnx.ai], PyTorch [https://pytorch.org/] or Keras [https://keras.io] format,
provided they have been first converted into a header and weight files
using the helpers available in ROOT
(see the ROOT documentation and tutorials [https://root.cern.ch/doc/master/dir_afb41fc0ce910d0ed999b271277cf431.html] for how to convert models).
While a limited set of models are supported (only a few types of layers
are implemented in SOFIE), if the conversion is possible, model evaluation in
SOFIE [https://root.cern/doc/v626/release-notes.html#sofie-code-generation-for-fast-inference-of-deep-learning-models] has the potential to be significantly faster than using the ONNX [https://onnx.ai],
Tensorflow [https://www.tensorflow.org/] or PyTorch [https://pytorch.org/] APIs.
Note that SOFIE [https://root.cern/doc/v626/release-notes.html#sofie-code-generation-for-fast-inference-of-deep-learning-models] is only supported in ROOT >= 6.26.04 but is not enabled by default,
so you’ll need to make sure that your ROOT build has SOFIE [https://root.cern/doc/v626/release-notes.html#sofie-code-generation-for-fast-inference-of-deep-learning-models] enabled.

Testing the evaluation outside RDataFrame

MVA inference with all the libraries described above is done by creating
an instance of an evaluator class, which provides a similar
RDataFrame-friendly interface: the filename of te saved model and additional
options are passed to the constructor, and an evaluate method that takes the
input values and returns the returns the MVA outputs is called from inside the
RDataFrame graph.
It is straightforward to do the same from PyROOT: for each framework there is a
method in the bamboo.root to load the necessary shared libraries and
evaluator class.
After calling this method, an evaluator can be instantiated and tested with
some simple arguments.
This is done in the bamboo tests [https://gitlab.cern.ch/cp3-cms/bamboo/-/blob/master/tests],
so these can serve as an example (links for the the relevant fragments:
test_tensorflow [https://gitlab.cern.ch/cp3-cms/bamboo/-/blob/master/tests/test_tensorflowceval_nn.py#L16-36],
test_lwtnn [https://gitlab.cern.ch/cp3-cms/bamboo/-/blob/master/tests/test_lwtnneval_nn.py#L17-38],
test_libtorch [https://gitlab.cern.ch/cp3-cms/bamboo/-/blob/master/tests/test_libtorcheval_nn.py#L8-23];
TMVA is directly included in ROOT, so it is sufficient to retrieve the
TMVA::Experimental::RReader class).

Make combined plots for different selections

It is rather common to define categories with e.g. different lepton flavours
and selections, but then make plots with the entries from these (disjoint)
sets of events combined.
Given the structure of the RDataFrame [https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html] graph and the
Selection tree, the most convenient way to achieve
this is by defining the histograms for each category, and make a merged
histogram later on.
The SummedPlot class does exactly this, and since it
presents the same interface to the analysis module as a regular
Plot, it can simply be added to the same plot list
(to produce only the combined plot and not those for the individual
contributions, it is sufficient to not add the latter to the plot list), e.g.

from bamboo.plots import Plot, SummedPlot, EquidistantBinning
mjj_mumu = Plot.make1D("Mjj_MuMu", op.invariant_mass(jets[0].p4, jets[1].p4),
 sel_mumu, EquidistantBinning(50, 20., 120.))
mjj_elel = Plot.make1D("Mjj_ElEl", op.invariant_mass(jets[0].p4, jets[1].p4),
 sel_elel, EquidistantBinning(50, 20., 120.))
mjj_sum = SummedPlot("Mjj", [mjj_mumu, mjj_elel], title="m(jj)")
plots += [mjj_mumu, mjj_elel, mjj_sum] # produce all plots

The other plot properties of a SummedPlot (titles,
labels etc.) can be specified with keyword arguments to the constructor;
otherwise they are taken from the first component plot.

Note

SummedPlot simply adds up the histograms,
it is up to the user to make sure an event can only enter one of the
categories, if this is what it is used for.

Producing skimmed trees

The bamboo.plots.Skim class allows to define skimmed trees to save
in the output file.
Since this uses the Snapshot method from RDataFrame [https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html], there will be an entry
for each event that passes the selection, so in some cases (e.g. MVA training)
additional manipulations may need to be done on these outputs.
A second limitation is that, as for plots, a skim is attached to a selection,
which means that if different categories need to be combined, multiple skims
should be defined, and the stored products merged—but multiple skims
can now be produced in the same job, thanks to the lazy Snapshot calls.
The main advantage over the SkimmerModule
(which still exists for backwards compatibility) is that the same module can
produce plots and skims, with the same selections and definitions (in practice
a command-line option would usually
be added to select some products), e.g.

from bamboo.plots import Plot, Skim

twoMuSel = noSel.refine("twoMuons", cut=[op.rng_len(muons) > 1])
mll = op.invariant_mass(muons[0].p4, muons[1].p4)
if self.args.makeSkim:
 plots.append(Skim("dimuSkim", {
 "run": None, # copy from input file
 "luminosityBlock": None,
 "event": None,
 "dimu_M": mll,
 "mu1_pt": muons[0].pt,
 "mu2_pt": muons[1].pt,
 }, twoMuSel))
else:
 plots.append(Plot.make1D("dimu_M", mll, twoMuSel,
 EquidistantBinning(100, 20., 120.)))

Postprocessing beyond plotIt

The HistogramsModule postprocessing method
calls plotIt [https://github.com/cp3-llbb/plotIt] to make the usual data and simulation stack plots (for the
different eras that are considered), and prints the counter values of cut flow
reports, but since all possible (meta-)information is available there, as well
as the filled histograms, it can be useful to do any further processing there
(e.g. running fits to the distributions, dividing histograms to obtain scale
factors or fake rates, exporting counts and histograms to a different format).

For many simple cases, it should be sufficient to override the
postProcess() method, first
call the base class method, and then do any additional processing.
If the base class method is not called, the plot list should be constructed
by calling the getPlotList()
method.

Most of the other code, e.g. to generate the plotIt [https://github.com/cp3-llbb/plotIt] YAML configuration file,
is factored out in helper methods to allow reuse from user-defined additions—see the bamboo.analysisutils.writePlotIt() and
bamboo.analysisutils.printCutFlowReports() methods, and their
implementation.

Note

getPlotList(),
when called without a specified file and sample, will read a so-called
skeleton file for an arbitrary sample (essentially an empty tree with the
same format as the input—typically for the first sample encountered)
from the results directory and calls the
definePlots() method with
that to obtain the list of defined plots.
This is also done when running with the --onlypost option, and works as
expected when the same plots are defined for all samples.
If this assumption does not hold, some customisation of the
definePlots() method will
be necessary.

It is also possible to skip the writing of a plotIt [https://github.com/cp3-llbb/plotIt] YAML file, and directly
load the configuration as it would be parsed by plotIt with its partial python
reimplementation pyplotit [https://gitlab.cern.ch/cp3-cms/pyplotit], which
makes it easy to access the scaled grouped and stacked histograms.

As an example, a simple visualisation of 2D histograms could be obtained with

def postProcess(self, taskList, config=None, workdir=None, resultsdir=None):
 super(MyModule, self).postProcess(taskList, config=config, workdir=workdir, resultsdir=resultsdir)
 from bamboo.plots import Plot, DerivedPlot
 plotList_2D = [ap for ap in self.plotList if (isinstance(ap, Plot) or isinstance(ap, DerivedPlot)) and len(ap.binnings) == 2]
 from bamboo.analysisutils import loadPlotIt
 p_config, samples, plots_2D, systematics, legend = loadPlotIt(config, plotList_2D, eras=self.args.eras[1], workdir=workdir, resultsdir=resultsdir, readCounters=self.readCounters, vetoFileAttributes=self.__class__.CustomSampleAttributes, plotDefaults=self.plotDefaults)
 from plotit.plotit import Stack
 from bamboo.root import gbl
 for plot in plots_2D:
 obsStack = Stack(smp.getHist(plot) for smp in samples if smp.cfg.type == "DATA")
 expStack = Stack(smp.getHist(plot) for smp in samples if smp.cfg.type == "MC")
 cv = gbl.TCanvas(f"c{plot.name}")
 cv.Divide(2)
 cv.cd(1)
 expStack.obj.Draw("COLZ")
 cv.cd(2)
 obsStack.obj.Draw("COLZ")
 cv.Update()
 cv.SaveAs(os.path.join(resultsdir, f"{plot.name}.png"))

Data-driven backgrounds and subprocesses

In many analyses, some backgrounds are estimated from a data control region,
with some per-event weight that depends on the physics objects found etc.
This can be largely automatised: besides the main
Selection, one or more instances with alternative
cuts (the control region instead of the signal region) and weights (the
mis-ID, fake, or transfer factors). That is exactly what is done by the
SelectionWithDataDriven class: its
create() method is like
bamboo.plots.Selection.refine(), but with alternative cuts and weights
to construct the correctly reweighted control region besides the signal region.
Since it supports the same interface as Selection,
further selections can be applied to both regions at the same time, and every
Plot will declare the histograms for both.
The additional code for configuring which data-driven contributions to use,
and to make sure that histograms for backgrounds end up in a separate file
(such that they can transparently be used e.g. in plotIt [https://github.com/cp3-llbb/plotIt]), the analysis module
should inherit from
DataDrivenBackgroundHistogramsModule (or
DataDrivenBackgroundAnalysisModule if the
histogram-specific functionality is not required).

Data-driven contributions should be declared in the YAML configuration file
with the lists of samples or groups from which the background estimate should
be obtained, those that are replaced by it, e.g.

datadriven:
 chargeMisID:
 uses: [data]
 replaces: [DY]
 nonprompt:
 uses: [data]
 replaces: [TTbar]

The --datadriven command-line argument can then be used to specify which of
these should be used (all, none, or an explicit list).
Several can be specified in the same run: different sets will then be produced.
The parsed versions are available as the datadrivenScenarios attribute of
the module (and the contributions as datadrivenContributions).
The third argument passed to the
create() method should
correspond to one of the contribution names in the YAML file, e.g. (continuing
the example above):

hasSameSignElEl = SelectionWithDataDriven.create(hasElElZ, "hasSSDiElZ", "chargeMisID",
 cut=(diel[0].Charge == diel[1].Charge),
 ddCut=(diel[0].Charge != diel[1].Charge),
 ddWeight=p_chargeMisID(diel[0])+p_chargeMisID(diel[1]),
 enable=any("chargeMisID" in self.datadrivenContributions and self.datadrivenContributions["chargeMisID"].usesSample(sample, sampleCfg))
)

The generation of modified sample configuration dictionaries in the plotIt [https://github.com/cp3-llbb/plotIt]
YAML file can be customised by replacing the corresponding entry in the
datadrivenContributions
dictionary with a variation of a DataDrivenContribution
instance.

A very similar problem is the splitting of a sample into different
contributions based on some generator-level quantities, e.g. the number of
(heavy-flavour) partons in the matrix element.
In this case, splitting the RDF graph early on, such that each event is
processed by a nearly identical branch of it, would not be very efficient.
The bamboo.plots.LateSplittingSelection class, a variation of
bamboo.plots.SelectionWithDataDriven, may help in such cases:
it will branch the RDF graph only when attaching plots to a selection, so it
can be constructed earlier, but the RDF graph branching will be minimal.
By default the combined plot is also saved because it helps avoid
duplication in the graph, but this may be disabled by passing
keepInclusive=False to the
create() method.
To make sure the resulting histograms are saved, an analysis module that makes
use of SelectionWithDataDriven should inherit from
bamboo.analysismodules.HistogramsModuleWithSub; since the use case
is rather specific, no customisation to the postprocessing method is done,
but in most cases it should be straightforward to manipulate the samples
dictionary in the configuration before calling the superclass’ postprocessing
method, see e.g. this recipe.

Dealing with (failed) batch jobs

When splitting the work over a set of batch jobs using the
--distributed=driver option (see the bambooRun options
reference), some may fail for various reasons: CPU time or memory limits
that are too tight, environment or hardware issues on the worker node,
or bugs in the analysis or bamboo code.
The monitoring loop will check the status of the running jobs every two
minutes, print information when some fail, merge outputs if all jobs for
a sample complete, and finally run the postprocessing when all samples are
processed, or exit when no running jobs remain.
Currently (improvements and additions are being discussed in
issue #87 [https://gitlab.cern.ch/cp3-cms/bamboo/-/issues/87]) resubmission
of the failed jobs and monitoring of the recovery jobs, after identifying the
reason why they fail, needs to be done using the tools provided by the batch
system (sbatch --array=X,Y,Z ... for slurm; for HTCondor a helper script
bambooHTCondorResubmit is provided that takes a very similar set of options—the commands are also printed by the monitoring loop).

When the outputs for all jobs that initially failed have been produced,
bambooRun can be used with the --distributed=finalize option (and
otherwise all the same options as for the original submission) to do any
remaining merging of outputs, and run the postprocessing step.
If some outputs are missing it will suggest a resubmission command and exit.
This only looks at the output files that are found to decide what still needs
to be done, so if a file in the results/ subdirectory of the output is
present, it will assume that is valid—this can be exploited in two ways:
if anything goes wrong in the merging, removing the results/<<sample>>.root
and running with --distributed=finalize will try that again (similarly,
removing a corrupt job output file will add it to the resubmission command),
and if a sample is processed with a different splitting it is sufficient to put
the merged output file in the results/ directory.

Note

Understanding why batch jobs fail is not always easy,
and the specifics depend on the batch system and the environment
Bamboo collects all possible log files (standard output and error,
submission log) in the batch/logs directory, and per-job inputs and
output in batch/input and batch/output, respectively.

In principle the worker jobs run in the same environment as where they are
submitted, and typically take all software is installed from CVMFS, so most
problems with batch jobs are related to data access, e.g. overloaded storage
or permissions to access some resources.
When reading files through XRootD a grid proxy is needed, at CERN the easiest
is to create it in an AFS directory and pass that to the job [https://batchdocs.web.cern.ch/tutorial/exercise2e_proxy.html#using-x509-proxy-without-shipping-it-with-the-job].

Reproducible analysis: keep track of the version that produced some results

While bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] does not by default force you to adopt a specific workflow,
it can help with adopting some best practices for reproducible analysis.
The most important thing is to keep the analysis code under version control:
git [https://git-scm.com/] is widely used for this (see the Pro Git book [https://git-scm.com/book/en/v2] for an introduction).
The idea is to keep the analysis code and configurations in a separate
directory, which is tracked by git [https://git-scm.com/], from the bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] outputs (plots, results
etc.)—this can also be a subdirectory that is ignored by git [https://git-scm.com/], if you
prefer.

bambooRun will write a file with the git [https://git-scm.com/] version of the repository where
the module and configuration file are found to the output directory: the
version.yml file.
This will also contain the list of command-line arguments that were passed,
and the bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] version.
In order for this to work, the analysis repository must at least have all local
changes committed, but it is even better to create a tag for versions that are
used to produce results, and push it to GitHub or GitLab (see e.g.
this overview [https://git-scm.com/book/en/v2/Git-Basics-Tagging]; it is
also worth noting that tags in git can be annotated, which means that they
can have a descriptive message, just like a commit).
If the --git-policy switch, or the policy key in the git section in
the ~/.config/bamboorc file, gets a different value than the default
(testing), bambooRun will check that the analysis code is committed,
tagged, or tagged and pushed, based on the specified value
(committed, tagged, and pushed, respectively).
It is recommended to use at least committed (which will print warnings
if the commit has not been pushed, or is not tagged).

Tip: use git worktrees

An interesting solution to have several checkouts of the same repository, e.g.
to run jobs with one version of the analysis code, and edit it at the same time,
are git worktrees (see git-worktree manual page [https://git-scm.com/docs/git-worktree] for a reference, or
this article [https://opensource.com/article/21/4/git-worktree] for some
examples).
They may also help with making sure that everything is committed and tracked by
git [https://git-scm.com/]: if you use the main clone to edit the code, and checkout a commit or tag
in a worktree to produce plots on the full dataset, committing all necessary
files is the best way to keep them synchronized (the “production” directory
should not contain any untracked files then).

Git worktrees were introduced in version 2.5, so it will not work with older
versions.
The LCG distribution includes git since LCG_99, so if you use that method of
installing bamboo it will be included automatically.

Tip: make a python package out of your analysis

For small analyses and projects, all that is needed are a YAML configuration
file and a python module, or a few of each.
When code needs to be shared between different modules, a simple solution is to
make it a python package: move the shared modules to a subdirectory, called
e.g. myanalysis, add an empty __init__.py to it, and write a
setup.py file (still required for editable installs) like this one:

from setuptools import setup, find_packages

setup(
 name="myexperiment-myanalysis",
 description="Hunt for new physics (implemented with bamboo)",
 url="https://gitlab.cern.ch/.../...",
 author="...",
 author_email="...",

 packages=find_packages("."),

 setup_requires=["setuptools_scm"],
 use_scm_version=True
)

It can then be installed in the virtual environment with

pip install -e .

and the shared modules imported as myanalysis.mymodule.
The -e flag actually puts only a link in the virtual environment, such that
any changes in the source files are immediately available, without updating the
installed version (then it does not spoil the change tracking above).

More information on packaging python packages can be found in the
PyPA packaging tutorial [https://python-packaging-user-guide.readthedocs.io/tutorials/packaging-projects/],
the setuptools documentation [https://setuptools.readthedocs.io/en/latest/userguide/declarative_config.html],
the PyPA setuptools guide [https://python-packaging-user-guide.readthedocs.io/guides/distributing-packages-using-setuptools/]
and the Scikit-HEP packaging guidelines [https://scikit-hep.org/developer/packaging].
For packages that include C++ components scikit-build [https://scikit-build.readthedocs.io/en/latest/]
allows to combine setuptools and CMake (it is also used by bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] and correctionlib [https://github.com/cms-nanoAOD/correctionlib/]).

SVfit for the reconstruction of the Higgs mass in \(H\rightarrow \tau\tau\) events

The Higgs mass in events with Higgs bosons decaying into a pair of \(\tau\) leptons
can be reconstructed using the SVfit algorithm [https://www.sciencedirect.com/science/article/pii/S0168900217305259?via%3Dihub/].
The algorithm is based on matrix element techniques and typically achieves a relative resolution
on the Higgs boson mass of 15–20%. It utilizes information about the missing transverse energy
and the kinematic properties of leptons as input.

The SVfit algorithm is not implemented within bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] framework itself, but an interface
is provided to enable users to use SVfit in bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html].

Firstly, SVfit needs to be installed (outside of the bamboo package).

git clone git@github.com:cp3-llbb/ClassicSVfit.git ClassicSVfit -b fastMTT_cmake_build
mkdir build-ClassicSVfit-FastMTT/
cd build-ClassicSVfit-FastMTT/
cmake cmake -DCMAKE_INSTALL_PREFIX=$VIRTUAL_ENV ../ClassicSVfit/
make -j2

After installation, the on the fly calculator should be added and configured
using the bamboo.analysisutils.configureSVfitCalculator() method, as shown in the example below.
Users can then utilize the bamboo.treefunctions.svFitMTT()
and bamboo.treefunctions.svFitFastMTT() functions for the reconstruction of the Higgs mass.

class MyAnalysisModule(NanoAODHistoModule):
 def prepareTree(self, tree, sample=None, sampleCfg=None):
 tree,noSel,be,lumiArgs = NanoAODHistoModule.prepareTree(self, tree, sample=sample, sampleCfg=sampleCfg)
 from bamboo.analysisutils import configureSVfitCalculator
 configureSVfitCalculator(pathToSVfit=" ", backend=be)
 return tree,noSel,be,lumiArgs

Advanced topics

Loading (and using) C++ modules

The bamboo.root module defines a few thin wrappers to load additional
libraries or headers with the ROOT interpreter (PyROOT makes them directly
accessible through the global namespace, which can be imported as gbl from
bamboo.root.
The bamboo.root.loadDependency() allows to load a combination of
headers and libraries; it is best called through the backend’s
addDependency() method,
which will also correctly register all components for the compilation of
standalone executables, when using the compiled backend (see below).
As an example, the library that contains the dictionaries for the classes
used in Delphes [https://cp3.irmp.ucl.ac.be/projects/delphes] output trees can be added as follows:

be.addDependency(libraries="Delphes")

In this specific case, bamboo.root.addLibrary("libDelphes") should also be
added to the analysis module’s
initialize() method, to make
sure the library is added before any file is opened.
For a module that is used in calculating expressions, it is sufficient to load
it only from the prepareTree()
or processTrees() method
(repeated loads should not cause problems).

C++ methods can be used directly from an expression.
Non-member methods that are known by the interpreter (e.g. because the
corresponding header has been added with bamboo.root.loadHeader()),
can be retrieved with bamboo.treefunctions.extMethod(), which returns
a decorated version of the method.

It is often useful to define a class that stores some parameters, and then call
a member method with event quantities to obtain a derived quantity (this is
also the mechanism used for most of the builtin corrections).
In order to use such a class, its header (and shared library, if necessary)
should be loaded as above, and an instance defined with
bamboo.treefunctions.define(), e.g.

myCalc = op.define("MyCalculatorType", 'const auto <<name>> = MyCalculatorType("test");')
myCorrection = myCalc.evaluate(tree.Muon[0].pt, tree.Muon[1].pt)

Warning

With implicit multi-threading enabled, only thread-safe methods may
be called in this way (e.g. const member methods, without global or member
variables used for caching).

Note

The usual logic to avoid redefinition of these variables is applied.
In cases like above where all parameters are supplied at once, this will
work as expected.
If the calculator is further configured by calling member methods (it can
be accessed directly through PyROOT), it is safer to create a unique
instance for each sample, e.g. by adding a comment that contains the sample
name at the end of the declaration (an optional nameHint argument can
be given to make the generated code more readable, but this will be ignored
in case the declaration string is the same).

Distributed RDataFrame

This adds support for DistRDF [https://root.cern/doc/master/classROOT_1_1RDataFrame.html#distrdf],
to distribute the computations dynamically to a cluster without having to manage the jobs in bamboo manually.
The backend handling the distribution is either Dask (distributed) [https://distributed.dask.org/en/stable/]
(typically with dask-jobqueue [https://jobqueue.dask.org/en/latest/index.html]) or
Spark [https://spark.apache.org/docs/latest/api/python/].
Through dask-jobqueue, “regular” batch systems based on Slurm or HTCondor are supported.
The long-term goal is to deprecate the batch job management (driver mode) in Bamboo entirely, and rely only on DistRDF.
This section describes how to configure bamboo to uses these systems efficiently.

Warning

These features should still be considered as experimental. More feedback is welcome
on how to fine-tune these systems in practice.

	To use DistRDF, call bambooRun with the additional --distrdf-be <BE> argument, where <BE> can be one of:
	
	dask_local: local-machine multiprocessing, useful for testing but functionally equivalent to –threads

	dask_scheduler: connect to an existing Dask scheduler for your cluster

	dask_slurm or dask_condor: Dask handles job submission to a Slurm or HTCondor cluster

	spark: connect to an existing Spark cluster (or spawn a locally running cluster)

DistRDF works with both default (sequential) processing mode, where one sample is processed after the other,
and with --distributed parallel, where the graphs for all samples are first built, before processing all samples in parallel.
Obviously, --distributed driver does not make sense here.

To configure the distributed backend, add a corresponding section in the environment file, e.g.:

[dask_slurm]
adapt_max = 100 ; submit max. 100 jobs

Have a look at the example at examples/distributed.ini [https://gitlab.cern.ch/cp3-cms/bamboo/-/tree/master/examples/distributed.ini]
for more configuration options.

For dask-jobqueue [https://jobqueue.dask.org/en/latest/index.html], you will in addition need to configure the submission to the Slurm/HTCondor
job scheduler using a jobqueue.yml file placed into ~/.config/dask/.
Have a look at the documentation of dask-jobqueue [https://jobqueue.dask.org/en/latest/index.html] and
at the example at examples/dask_jobqueue.yaml [https://gitlab.cern.ch/cp3-cms/bamboo/-/tree/master/examples/dask_jobqueue.yaml].

Ordering selections and plots efficiently

Internally, Bamboo uses the RDataFrame [https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html] class to process the input samples and
produce histograms or skimmed trees—in fact no python code is run while
looping over the events: Bamboo builds up a computation graph when
Selection and Plot
objects are defined by the analysis module’s
definePlots() method,
RDataFrame [https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html] compiles the expressions for the cuts and variables, and the input
files and events are only looped over once, when the histograms are retrieved
and stored.

In practice, however, there are not only Filter
(Selection) and Fill
(Plot) nodes in the computation graph, but also
Define nodes that calculate a quantity based on other columns and make
the result available for downstream nodes to use directly.
This is computationally more efficient if the calculation is complex enough.
Bamboo tries to make a good guess at which (sub-)expressions are worth
pre-calculating (typically operations that require looping over a collection),
but the order in which plots and selections are defined may still help to avoid
inserting the same operation twice in the computation graph.

The main feature to be aware of is that RDataFrame [https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html] makes a node in the
computation graph for every Define operation, and the defined column can
only be used from nodes downstream of that.
Logically, however, all defined columns needed for plots or sub-selections of
one selection will need to be evaluated for all events passing this selection,
and the most efficient is to do this only once, so ideally all definitions
should be inserted right after the Filter operation of the selection, and
before any of the Fill and subsequent Filter nodes.
This is a bit of a simplification: it is possible to imagine cases where it can
be better to have a column only defined for the sub-nodes that actually use it,
but then it is hard to know in all possible cases where exactly to insert the
definitions, so the current implementation opts for a simple and predictable
solution: on-demand definitions of subexpressions are done when
Plot and Selection objects
are constructed, and they update the computation graph node that other nodes
that derive from the same selection will be based on.
A direct consequence of this is that it is usually more efficient to first
define plots for a stage of the selection, and only then define refined
selections based on it—otherwise the subselection will be based on the
node without the columns defined for the plots and, in the common case where
the same plots are made at different stages of the selection, recreate nodes
with the same definitions in its branch of the graph.
As an illustration, the pseudocode equivalent of these two cases is

define first subselection then plots
some_calculation(other_columns) is done twice
if selectionA:
 if selectionB:
 myColumn1 = some_calculation(other_columns)
 myPlot1B = makePlot(myColumn1)
 myColumn2 = some_calculation(other_columns)
 myPlot1A = makePlot(myColumn2)

define first plots then subselection
some_calculation(other_columns) is only done once
if selectionA:

 myColumn1 = some_calculation(other_columns)
 myPlot1A = makePlot(myColumn1)
 if selectionB:
 myPlot1B = makePlot(myColumn1)

This is why it is advisable to reserve the
definePlots() method of the
analysis module for defining event and object container selections, and define
helper methods that declare the plots for a given selection—with a
parameter that is inserted in the plot name to make sure they are unique, if
used to define the same plots for different selection stages, e.g.

def makeDileptonPlots(self, sel, leptons, uname):
 from bamboo.plots import Plot, EquidistantBinning
 from bamboo import treefunctions as op
 plots = [
 Plot.make1D("{0}_llM".format(uname),
 op.invariant_mass(leptons[0].p4, leptons[1].p4), sel,
 EquidistantBinning(100, 20., 120.),
 title="Dilepton invariant mass",
 plotopts={"show-overflow":False}
)
]
 return plots

def definePlots(self, t, noSel, sample=None, sampleCfg=None):
 from bamboo import treefunctions as op

 plots = []

 muons = op.select(t.Muon, lambda mu : op.AND(mu.p4.Pt() > 20., op.abs(mu.p4.Eta() < 2.4)))

 twoMuSel = noSel.refine("twoMuons", cut=[op.rng_len(muons) > 1])

 plots += self.makeDileptonPlots(twoMuSel, muons, "DiMu")

 jets = op.select(t.Jet, lambda j : j.p4.Pt() > 30.)

 twoMuTwoJetSel = twoMuSel.refine("twoMuonsTwoJets", cut=[op.rng_len(jets) > 1])

 plots += self.makeDileptonPlots(twoMuTwoJetSel, muons, "DiMu2j")

 return plots

Finally, there are some cases where the safest is to force the inclusion of a
calculation at a certain stage, for instance when performing expensive function
calls, since the default strategy is not to precalculate these because there are
many more function calls that are not costly.
A prime example of this is the calculation of modified jet collections with e.g.
an alternative JEC aplied, which is done in a separate C++ module (see below),
and is probably the slowest operation in most analysis tasks.
The definition can be added explicitly under a selection by calling the
bamboo.analysisutils.forceDefine() method, e.g. with

for calcProd in t._Jet.calcProds:
 forceDefine(calcProd, mySelection)

Different backends

Different approaches for converting plots and selections to an RDataFrame [https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html]
graph have been implemented, each with some advantages and disadvantages.
The --backend option of the bambooRun command allows to select one.
The default approach is to generate the necessary helper methods and define
JITted nodes whenever a plot or selection is added.
This has the advantage that if there is a problem that can be detected at this
stage, it is easy to trace back.

The lazy backend (--backend==lazy) instead waits for all plots and
selections to be defined before constructing the graph.
In principle, that ensures the order from the previous section, so depending
on the case it will generate a more efficient graph.
This uses the same JITted Define and Filter nodes as the default.

The experimental compiled backend takes things a step further, by generating
the full C++ source for a standalone executable, essentially eliminating
the need for any type inference at runtime.
The structure of the graph will be identical to the one from the lazy backend,
but with compiled instead of JITted nodes.

Note

Event processing with such an executable will be faster—in many cases by a significant amount—but the time needed for compilation,
and especially the memory usage during compilation and linking, may be non-negligible.
A few dynamic features (e.g. progress printing) are currently disabled as well.
More efficiently using the compiled backend is closely tied to reusing the same
executable across batch jobs and for different samples, and compiling different
executables in parallel.
These are planned, but they need some restructuring of the code, which will
be done in steps as they will also allow for some other new features to be
added, e.g. only producing a subset of the histograms, and using
distributed RDF [https://root.cern/doc/master/classROOT_1_1RDataFrame.html#distrdf].

The compiled backend takes a few additional options, which can be passed by
setting its attributes (a reference to the backend should be returned by the
prepareTree() method).
These are:

	cmakeConfigOptions: options passed to CMake [https://cmake.org/] when configuring the build,
in addition to the path and the variables needed to pick up the bamboo C++
extensions (default: ["-DCMAKE_BUILD_TYPE=Release"], which implies
-O3)

	cmakeBuildOptions: options passed to cmake --build when compiling
the executable

In case anything goes wrong during the configuration or build, the temporary
directory will be saved, and the errors and path printed in the log file.

Under the hood

This page collects some useful information for debugging and developing
bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html].

Debugging problems

Despite a number of internal checks, bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] may not work correctly in some
cases.
If you encounter a problem, the following list of tips may help to find some
clues about what is going wrong:

	does the error message (python exception, or ROOT printout) provide any hint?
(for batch jobs: check the logfile, its name should be printed)

	try to rerun on (one of) the offending sample(s), with debug printout turned
on (by passing the -v or --verbose option, for failed batch jobs the
main program prints the command to reproduce)

	if the problem occurs only for one or some samples: is there anything special
in the analysis module for this sample, or in its tree format?
The interactive mode to explore the decorated tree can be very useful to
understand problems with expressions.

	in case of a segmentation violation while processing the events: check if you
are not accessing any items from a container that are not guaranteed to exist
(i.e. if you plot properties of the 2nd highest-pt jet in the event, the
event selection should require at least two jets; with combinations or
selections of containers this may not always be easy to find).
The bamboo.analysisutils.addPrintout() function may help to insert
printout statements in the RDataFrame [https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html] graph, see its description for an
example.

	check the open issues [https://gitlab.cern.ch/cp3-cms/bamboo/-/boards] to see if your problem has already been reported, or
is a known limitation, and, if not, ask for help on mattermost [https://mattermost.web.cern.ch/cms-exp/channels/bamboo] or directly
create a new issue [https://gitlab.cern.ch/cp3-cms/bamboo/issues/new?issue%5Bassignee_id%5D=&issue%5Bmilestone_id%5D=]

Different components and their interactions

Expressions: proxies and operations

The code to define expressions (cuts, weight factors, variables) in bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html]
is designed to look as if the per-event variables (or columns of the
RDataFrame [https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html]) are manipulated directly, but what actually happens is that a
python object representation is constructed.
The classes used for this are defined in the bamboo.treeoperations
module, and inherit from TupleOp.
There are currently about 25 concrete implementations.

These classes contain the minimal needed information to obtain the value they
represent (e.g. names of columns to retrieve, methods to call), but generally
no complete type information or convenience methods to use them.
They are used by almost all other bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] code, but not meant to be directly
manipulated by the user code—this is what the proxy classes are for.

The main restriction on TupleOp classes is
that, once constructed, the operation part of an expression should not be
modified.
More specifically: not after they have been passed to any backend code (so
directly after construction, e.g. by cloning, should be safe, but since
subexpressions may be passed on-demand, one should not make any assumptions in
other cases).
This allows to cache the hash of an operation, and thus very fast lookup of
expressions in sets and dictionaries, which the backend uses extensively.

The proxy classes wrap one or more operations, and behave as the resulting
value.
In some cases the correspondence is trivial, e.g. a branch with a single
floating-point number is retrieved with a
GetColumn operation, and wrapped with a
FloatProxy, which overloads operators for
basic math, but a proxy can also represent an object or concept that does not
correspond to a C++ type stored on the input tree, e.g. an electron (the
collection of values with the same index in all Electron_*[nElectron]
branches), or a subset of the collection of electrons, whose associated
operation would be a list of indices, with the proxy holding a reference to
the original collection proxy.

All proxy classes (currently about 25) are defined in the
bamboo.treeproxies module, and inherit from the
TupleBaseProxy base class, which means they
need to have an associated type, and hold a reference to a parent operation.
Operations only refer to other operations and constants, not to proxies, so
when an action (overloaded operator, member method, or a function from
bamboo.treefunctions) is performed on a proxy, a new proxy is
returned that wraps the resulting operation.

In principle proxies are only there for the user code: starting from the input
tree proxy, expressions are generated and passed to the backend, which strips
off the proxy, and generates executable code from the operation (possibly
retaining the result type from the proxy, if relevant for the produced output,
e.g. when producing a skimmed tree).
There are therefore few constraints on how the proxy classes work, as long as
the result of any action on them produces a valid operation with the expected
meaning.

Tree decorations

All user-defined expressions start from the decorated input tree, which can,
following the previous subsection, be seen as a tree proxy.
In fact, this is exactly what the tree decoration method does: it generates the
necessary ad-hoc types that inherit from the building block proxy classes from
bamboo.treeproxies, and also have all the attributes corresponding to
the branches of the input tree.
Technically, this is done with the type builtin [https://docs.python.org/3/library/functions.html#type], and a few descriptor [https://docs.python.org/3/reference/datamodel.html#descriptors]
classes.

Much of the information needed for this can be obtained by introspecting the
tree, but some details, e.g. about systematics to enable, may need to be
supplied by the user.

Selections, plots, and the RDataFrame

The main thing to know about the RDataFrame [https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html] in bamboo [https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html] is that partial results
are declared upon construction of Plot and
Selection objects.
The backend keeps a shadow graph of selections (with their alternatives under
systematic variations, if needed), and, for each of these, a list of the
operations that have been defined as a new column.

When an operation is converted to a C++ expression string, a reference to the
selection node where it is needed is passed, such that subexpressions can be
defined on-demand (as explained in this section, if a
precalculated column is needed for a selection, it may be beneficial to declare
that earlier rather than later).
This makes the verbose output a bit harder to read (to avoid redeclaring the
same function, argument names are also replaced), but ensures the correct order
of definition and reasonable efficiency.
Currently, all operations that take range arguments, and those that are
explicitly marked, are precalculated.
Function calls, notably, are not, since most are cheap to evaluate—this is
why expensive function calls sometimes should be explicitly requested to be
precalculated for a specific selection with
bamboo.analysisutils.forceDefine().

Organisationally, the bookkeeping code, and all the code that accesses the
interpreter and RDataFrame [https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html] directly, is kept in
bamboo.dataframebackend, while the conversion of a
TupleOp is done by its
get_cppStr() method (many of these are
trivial, but for range-based operations, which define a helper function, they
get a bit more involved).

Running the tests, or adding test cases

The test suite consists of two parts: the standard tests, which are run for
every opened merge request, and push to a pull request or the master branch,
and a set of regression tests that perform a bin-by-bin comparison of
the histograms produced with a simple plotter over a small dataset.
The former are closer to unit tests, and limited integration tests, so they
check test some components in isolation, and sequences of basic operations,
like constructing a few Selection and
Plot objects.

All the tests can easily be run with pytest [https://docs.pytest.org/en/stable/], the standard tests with

pytest <bamboo_clone>/tests

and the additional regression tests with

pytest <bamboo_clone>/tests/test_plotswithreference.py --plots-reference=/home/ucl/cp3/pdavid/scratch/bamboo_test_reference

where the directory above is one set of reference histograms at the UCLouvain
T2 grid site; details on producing such a set are given below.
These are not fully integrated with Gitlab CI yet because they require access
to CMS NanoAOD files.
More generally, passing a specific file to pytest will make it run only
the tests defined in that file.

Note

Tests are not only useful when developing new code.
They can also be very helpful in understanding some unexpected or buggy
behaviour, and pytest [https://docs.pytest.org/en/stable/] makes it very easy to run the tests, and add more:
just add a method starting with test_ in one of the test files,
with an assertion to check if the tests passes, or add a file with a name
starting with test_ to the tests directory and define your test
cases there.
Contributing tests is one of the easiest ways to get to know the internals
and help with bamboo development, so more tests are always welcome.

The regression tests will by default use a temporary directory, so the output
is automatically removed when the test run finishes.
This can be changed by passing a directory to the --plots-output argument.
To turn such an output directory into a new reference directory, two files
should be added, test_zmm_ondemand.yml and test_zmm_postproc.yml,
which are the configuration files for the on-demand and postprocessed runs,
respectively.
In fact the only output files that are used are the histogram files in
the respective results directories, so the rest of the output directories
can, but needs not, be removed.

The T2_BE_UCL test configs use a single file of data, DoubleMuon for 2016 and
DoubleEG for 2017, and 100k events from a Drell-Yan simulation sample for each
of the two years, but any similar configuration should work.
The postprocessing must add the full set of jet and MET kinematic variations.

The bin-by-bin comparison may also be useful for other contexts,
so it is made available as a command-line script in
<bamboo_clone>/tests/diffHistsAndFiles.py.
Full documentation is available through the --help command, but generally
it takes two directories with histograms, and will compare all histograms in
ROOT files present in both (if some ROOT files are present in one but not
the other directory, that will also be considered a failure).

API Reference

This page lists the classes and methods that are necessary for building an analysis,
but are not related to expressions (see Building expressions
for a description of those)—the aim is to provide a set of easy-to-use classes and methods.

Plots and selections

The bamboo.plots module provides high-level classes to represent
and manipulate selections and plots.

	
class bamboo.plots.CategorizedSelection(parent=None, categories=None, name=None)

	Helper class to represent a group of similar selections on different categories

The interface is similar, but not identical to that of Selection
(constructing Plot objects is done through the
makePlots() method,
which takes additional arguments).
Each category selection can have a candidate, typically the object
or group of object that differs between the categories.
The axis variables can then either be expressions, or callables
that will be passed this per-category object.

	Example:

	

>>> muonSel = noSel.refine("hasMuon", cut=(
>>> op.rng_len(muons) > 0, op.OR(op.rng_len(electrons) == 0,
>>> muons[0].pt > electrons[0].pt)))
>>> electronSel = noSel.refine("hasElectron", cut=(
>>> op.rng_len(electrons) > 0, op.OR(op.rng_len(muons) == 0,
>>> electrons[0].pt > muons[0].pt)))
>>> oneLeptonSel = CategorizedSelection(categories={
... "Mu" : (muonSel, muons[0]),
... "El" : (electronSel, electrons[0])
... })
>>> oneLep2JSel = onLeptonSel.refine("hasLep2J", cut=(op.rng_len(jets) >= 2))
>>> plots += oneLep2JSel.makePlots("J1PT", jets[0].pt, EqB(50, 0., 150.))
>>> plots += oneLep2JSel.makePlots("LJ1Mass",
... (lambda l : op.invariant_mass(jets[0].p4, l.p4)), EqB(50, 0., 200.))

	
__init__(parent=None, categories=None, name=None)

	Construct a group of related selections

	Parameters:

	
	name – name (optional)

	parent – parent CategorizedSelection (optional)

	categories – dictionary of a Selection and candidate
(any python object) per category (key is category name),
see the addCategory() method below

	
addCategory(catName, selection, candidate=None)

	Add a category

	Parameters:

	
	catName – category name

	selection – Selection for this category

	candidate – any python object with event-level quantities specific to this category

	
makePlots(name, axisVariables, binnings, construct=None, savePerCategory=True, saveCombined=True, combinedPlotType=<class 'bamboo.plots.SummedPlot'>, **kwargs)

	Make a plot for all categories, and/or a combined one

	Parameters:

	
	name – plot name (per-category plot names will be "{name}_{category}")

	axisVariables – one or more axis variables

	binnings – as many binnings as variables

	construct – plot factory method, by default the make{N}D method of
Plot (with N the number of axis variables)

	savePerCategory – save the individual plots (enabled by default)

	saveCombine – save the combined plot (enabled by default)

	combinedPlotType – combined plot type, SummedPlot by default

	Returns:

	a list of plots

	
refine(name, cut=None, weight=None, autoSyst=True)

	Equivalent of refine(), but for all categories at a time

	Parameters:

	
	name – common part of the name for the new category selections
(individual names will be "{name}_{category})

	cut – cut(s) to add. If callable, the category’s candidate will be passed

	weight – weight(s) to add. If callable, the category’s candidate will be passed

	autoSyst – automatically add systematic variations
(True by default - set to False to turn off; note that this would also turn off
automatic systematic variations for any selections and plots that derive
from the one created by this method)

	Returns:

	the new CategorizedSelection

	
class bamboo.plots.CutFlowReport(name, selections=None, recursive=False, titles=None, autoSyst=False, cfres=None, printInLog=False)

	Collect and print yields at different selection stages, and cut efficiencies

The simplest way to use this, just to get an overview of the number of events
passing each selection stage in the log file, is by adding a
CutFlowReport("yields", selections=<list of selections>, recursive=True, printInLog=True)
to the list of plots.
recursive=True will add all parent selections recursively,
so only the final selection categories need to be passed to the selections
keyword argument.

It is also possible to output a LaTeX yields table, and specify exactly which
selections and row or column headers are used.
Then the CutFlowReport should be constructed like this:

yields = CutFlowReport("yields")
plots.append(yields)
yields.add(<selection1-or-list-of-selections1>, title=title1)
yields.add(<selection2-or-list-of-selections2>, title=title2)
...

Each yields.add call will then add one entry in the yields table,
with the yield the one of the corresponding selection, or the sum over
the list (e.g. different categories that should be taken together);
the other dimension are the samples (or sample groups).
The sample (group) titles and formatting of the table can be
customised in the same way as in plotIt, see
printCutFlowReports()
for a detailed description of the different options.

	
__init__(name, selections=None, recursive=False, titles=None, autoSyst=False, cfres=None, printInLog=False)

	Constructor. name is mandatory, all other are optional; for full control
the add() should be used to add entries.

Using the constructor with a list of Selection
instances passed to the selections keyword argument, and recursive=True, printInLog=True
is the easiest way to get debugging printout of the numbers of passing events.

	
add(selections, title=None)

	Add an entry to the yields table, with a title (optional)

	
produceResults(bareResults, fbe, key=None)

	Main interface method, called by the backend

	Parameters:

	
	bareResults – iterable of histograms for this plot produced by the backend

	fbe – reference to the backend

	key – key under which the backend stores the results (if any)

	Returns:

	an iterable with ROOT objects to save to the output file

	
readFromResults(resultsFile)

	Reconstruct the CutFlowReport, reading counters from a results file

	
class bamboo.plots.DerivedPlot(name, dependencies, **kwargs)

	Base class for a plot with results based on other plots’ results

The dependencies attribute that lists
the Plot-like objects this one depends on (which
may be used e.g. to order operations).
The other necessary properties (binnings, titles, labels, etc.) are taken
from the keyword arguments to the constructor, or the first dependency.
The produceResults() method,
which is called by the backend to retrieve the derived results,
should be overridden with the desired calculation.

Typical use cases are summed histograms, background subtraction, etc.
(the results are combined for different subjobs with hadd, so derived
quantities that require the full statistics should be calculated from
the postprocessing step; alternative or additional systematic variations
calculated from the existing ones can be added by subclassing
Plot).

	
__init__(name, dependencies, **kwargs)

	

	
collectDependencyResults(fbe, key=None)

	helper method: collect all results of the dependencies

	Returns:

	[(nominalResult, {"variation" : variationResult})]

	
produceResults(bareResults, fbe, key=None)

	Main interface method, called by the backend

	Parameters:

	
	bareResults – iterable of histograms for this plot produced by the backend (none)

	fbe – reference to the backend, can be used to retrieve the histograms for the dependencies,
e.g. with collectDependencyResults()

	key – key under which the backend stores the results (if any)

	Returns:

	an iterable with ROOT objects to save to the output file

	
class bamboo.plots.EquidistantBinning(N, mn, mx)

	Equidistant binning

	
__init__(N, mn, mx)

	
	Parameters:

	
	N – number of bins

	mn – minimum axis value

	mx – maximum axis value

	
class bamboo.plots.FactoryBackend

	Interface for factory backend (to separate Plots classes from ROOT::RDataFrame part)

	
__init__()

	

	
buildGraph(plotList)

	Called after adding all products, but before retrieving the results

	
classmethod create(tree, nThreads=None)

	Factory method, should return a pair of the backend and root selection

	
define(op, selection)

	explicitly define column for expression

	
class bamboo.plots.LateSplittingSelection(parent, name, cuts=None, weights=None, autoSyst=True, keepInclusive=None)

	A drop-in replacement for Selection to efficiently split a sample

The concept is quite similar to SelectionWithDataDriven,
but with very different performance trade-offs: the former creates two parallel branches of
the RDF graph, each for their own set of events (with a typically small performance
overhead due to dupliation), whereas this is for cases where all events should be processed
identically until they are filled into histograms (e.g. separating subprocesses based on
MC truth). It is worth defining columns with these categories early on, such that the splitting
does not need to do it many times for different selections and categories.

	
__init__(parent, name, cuts=None, weights=None, autoSyst=True, keepInclusive=None)

	
	Constructor. Prefer using refine() instead
	(except for the ‘root’ selection)

	Parameters:

	
	parent – backend or parent selection

	name – (unique) name of the selection

	cuts – iterable of selection criterion expressions (optional)

	weights – iterable of weight factors (optional)

	
static create(parent, name, splitCuts=None, keepInclusive=True, cut=None, weight=None, autoSyst=True)

	Create a selection that will lazily split into categories

	Parameters:

	
	name – name of the new selection (after applying the cut and weight,
as in bamboo.plots.Selection.refine())

	splitCuts – dictionary of regions, the values should be the cuts that define the region

	keepInclusive – also produce the plots without splitting

	cut – common selection

	weight – common weight

	autoSyst – automatically propagate systematic uncertainties

	
initSub()

	
	Initialize related selections, should be called before registering non-plot products
	(anything not going through registerPlot)

	
class bamboo.plots.Plot(name, variables, selection, binnings, weight=None, title='', axisTitles=(), axisBinLabels=(), plotopts=None, autoSyst=True, key=None)

	A Plot object contains all information needed
to produce a histogram: the variable(s) to plot, binnings and options
(axis titles, optionally some style information), and a reference to
a Selection (which holds all cuts and weights to apply for the plot).

Note

All Plot (and Selection) instances
need to have a unique name. This name is used to construct output filenames, and internally
to define DataFrame columns with readable names.
The constructor will raise an exception if an existing name is used.

	
__init__(name, variables, selection, binnings, weight=None, title='', axisTitles=(), axisBinLabels=(), plotopts=None, autoSyst=True, key=None)

	Generic constructor. Please use the static make1D(),
make2D() and make3D() methods,
which provide a more convenient interface to construct histograms
(filling in some defaults requires knowing the dimensionality).

	
clone(name=None, variables=None, selection=None, binnings=None, weight=None, title=None, axisTitles=None, axisBinLabels=None, plotopts=None, autoSyst=True, key=None)

	Helper method: create a copy with optional re-setting of attributes

	
classmethod make1D(name, variable, selection, binning, **kwargs)

	Construct a 1-dimensional histogram plot

	Parameters:

	
	name – unique plot name

	variable – x-axis variable expression

	selection – the Selection with cuts and weights to apply

	binning – x-axis binning

	weight – per-entry weight (optional, multiplied with the selection weight)

	title – plot title

	xTitle – x-axis title (optional, taken from plot title by default)

	xBinLabels – x-axis bin labels (optional)

	plotopts – dictionary of options to pass directly to plotIt (optional)

	autoSyst – automatically add systematic variations (True by default - set to False to turn off)

	Returns:

	the new Plot instance with a 1-dimensional histogram

	Example:

	

>>> hasTwoEl = noSel.refine(cut=(op.rng_len(t.Electron) >= 2))
>>> mElElPlot = Plot.make1D(
>>> "mElEl", op.invariant_mass(t.Electron[0].p4, t.Electron[1].p4), hasTwoEl,
>>> EquidistantBinning(80, 50., 130.), title="Invariant mass of the leading-PT electrons")

	
classmethod make2D(name, variables, selection, binnings, **kwargs)

	Construct a 2-dimensional histogram plot

	Parameters:

	
	name – unique plot name

	variables – x- and y-axis variable expression (iterable, e.g. tuple or list)

	selection – the Selection with cuts and weights to apply

	binnings – x- and y-axis binnings (iterable, e.g. tuple or list)

	weight – per-entry weight (optional, multiplied with the selection weight)

	title – plot title

	xTitle – x-axis title (optional, empty by default)

	yTitle – y-axis title (optional, empty by default)

	xBinLabels – x-axis bin labels (optional)

	yBinLabels – y-axis bin labels (optional)

	plotopts – dictionary of options to pass directly to plotIt (optional)

	autoSyst – automatically add systematic variations (True by default - set to False to turn off)

	Returns:

	the new Plot instance with a 2-dimensional histogram

	
classmethod make3D(name, variables, selection, binnings, **kwargs)

	Construct a 3-dimensional histogram

	Parameters:

	
	name – unique plot name

	variables – x-, y- and z-axis variable expression (iterable, e.g. tuple or list)

	selection – the Selection with cuts and weights to apply

	binnings – x-, y-, and z-axis binnings (iterable, e.g. tuple or list)

	weight – per-entry weight (optional, multiplied with the selection weight)

	title – plot title

	xTitle – x-axis title (optional, empty by default)

	yTitle – y-axis title (optional, empty by default)

	zTitle – z-axis title (optional, empty by default)

	xBinLabels – x-axis bin labels (optional)

	yBinLabels – y-axis bin labels (optional)

	zBinLabels – z-axis bin labels (optional)

	plotopts – dictionary of options to pass directly to plotIt (optional)

	autoSyst – automatically add systematic variations (True by default - set to False to turn off)

	Returns:

	the new Plot instance with a 3-dimensional histogram

	
produceResults(bareResults, fbe, key=None)

	Trivial implementation of produceResults()

Subclasses can e.g. calculate additional systematic variation histograms from the existing ones

	Parameters:

	
	bareResults – list of nominal and systematic variation histograms
for this Plot

	fbe – reference to the backend

	key – key under which the backend stores the results (if any)

	Returns:

	bareResults

	
class bamboo.plots.Product(name, key=None)

	Interface for output products (plots, counters etc.)

	
__init__(name, key=None)

	

	
produceResults(bareResults, fbe, key=None)

	Main interface method, called by the backend

	Parameters:

	
	bareResults – iterable of histograms for this plot produced by the backend

	fbe – reference to the backend

	key – key under which the backend stores the results (if any)

	Returns:

	an iterable with ROOT objects to save to the output file

	
class bamboo.plots.Selection(parent, name, cuts=None, weights=None, autoSyst=True)

	A Selection object groups a set of selection criteria
(cuts) and weight factors that belong to a specific stage of the selection and analysis.
Selections should be constructed by calling the refine()
method on a ‘root’ selection (which may include overall selections and weights, e.g.
a lumi mask for data and pileup reweighting for MC).

Note

All Selection (and Plot) instances
need to have a unique name. This name is used internally to define DataFrame columns
with readable names.
The constructor will raise an exception if an existing name is used.

	
__init__(parent, name, cuts=None, weights=None, autoSyst=True)

	
	Constructor. Prefer using refine() instead
	(except for the ‘root’ selection)

	Parameters:

	
	parent – backend or parent selection

	name – (unique) name of the selection

	cuts – iterable of selection criterion expressions (optional)

	weights – iterable of weight factors (optional)

	
refine(name, cut=None, weight=None, autoSyst=True)

	Create a new selection by adding cuts and/or weight factors

	Parameters:

	
	name – unique name of the new selection

	cut – expression (or list of expressions) with additional selection criteria
(combined using logical AND)

	weight – expression (or list of expressions) with additional weight factors

	autoSyst – automatically add systematic variations
(True by default - set to False to turn off; note that this would also turn off
automatic systematic variations for any selections and plots
that derive from the one created by this method)

	Returns:

	the new Selection

	
class bamboo.plots.SelectionWithDataDriven(parent, name, cuts=None, weights=None, autoSyst=True, sub=None)

	
	A main Selection with the corresponding “shadow”
	Selection instances for evaluating data-driven backgrounds
(alternative cuts and/or weights)

	
static create(parent, name, ddSuffix, cut=None, weight=None, autoSyst=True, ddCut=None, ddWeight=None, ddAutoSyst=True, enable=True)

	Create a selection with a data-driven shadow selection

Drop-in replacement for a bamboo.plots.Selection.refine() call:
the main selection is made from the parent with cut and weight,
the shadow selection is made from the parent with ddCut and ddWeight.
With enable=False no shadow selection is made (this may help to avoid
duplication in the calling code).

	
class bamboo.plots.SelectionWithSub(parent, name, cuts=None, weights=None, autoSyst=True, sub=None)

	
	A common base class for Selection subclasses
	with related/alternative/sub-Selection instances attached

A dictionary of additional selections is kept in the sub attribute (could be None to disable).

	
__init__(parent, name, cuts=None, weights=None, autoSyst=True, sub=None)

	
	Constructor. Prefer using refine() instead
	(except for the ‘root’ selection)

	Parameters:

	
	parent – backend or parent selection

	name – (unique) name of the selection

	cuts – iterable of selection criterion expressions (optional)

	weights – iterable of weight factors (optional)

	
static getSubsForPlot(p, requireActive=False, silent=False)

	Helper method: gather the sub-selections for which a plot is produced

	
initSub()

	
	Initialize related selections
	(no-op by default, subclasses can request to call this to enable some functionality)

	
refine(name, cut=None, weight=None, autoSyst=True)

	Create a new selection by adding cuts and/or weight factors

	Parameters:

	
	name – unique name of the new selection

	cut – expression (or list of expressions) with additional selection criteria
(combined using logical AND)

	weight – expression (or list of expressions) with additional weight factors

	autoSyst – automatically add systematic variations
(True by default - set to False to turn off; note that this would also turn off
automatic systematic variations for any selections and plots
that derive from the one created by this method)

	Returns:

	the new Selection

	
class bamboo.plots.Skim(name, branches, selection, keepOriginal=None, maxSelected=-1, treeName=None, key=None)

	Save selected branches for events that pass the selection to a skimmed tree

	
__init__(name, branches, selection, keepOriginal=None, maxSelected=-1, treeName=None, key=None)

	Skim constructor

	Parameters:

	
	name – name of the skim (also default name of the TTree)

	branches – dictionary of branches to keep (name and definition for new branches,
or name and None for specific branches from the input tree)

	selection – Selection of events to save

	keepOriginal – list of branch names to keep, bamboo.plots.Skim.KeepRegex
instances with patterns of branch names to keep, or bamboo.plots.Skim.KeepAll
to keep all branches from the input tree

	maxSelected – maximal number of events to keep (default: no limit)

	Example:

	

>>> plots.append(Skim("dimuSkim", {
>>> "run": None, # copy from input
>>> "luminosityBlock": None,
>>> "event": None,
>>> "dimu_m": op.invariant_mass(muons[0].p4, muons[1].p4),
>>> "mu1_pt": muons[0].pt,
>>> "mu2_pt": muons[1].pt,
>>> }, twoMuSel,
>>> keepOriginal=[
>>> Skim.KeepRegex("PV_.*"),
>>> "nOtherPV",
>>> Skim.KeepRegex("OtherPV_.*")
>>>])

	
produceResults(bareResults, fbe, key=None)

	Main interface method, called by the backend

	Parameters:

	
	bareResults – iterable of histograms for this plot produced by the backend

	fbe – reference to the backend

	key – key under which the backend stores the results (if any)

	Returns:

	an iterable with ROOT objects to save to the output file

	
class bamboo.plots.SummedPlot(name, termPlots, **kwargs)

	A DerivedPlot implementation that sums histograms

	
__init__(name, termPlots, **kwargs)

	

	
produceResults(bareResults, fbe, key=None)

	Main interface method, called by the backend

	Parameters:

	
	bareResults – iterable of histograms for this plot produced by the backend (none)

	fbe – reference to the backend, can be used to retrieve the histograms for the dependencies,
e.g. with collectDependencyResults()

	key – key under which the backend stores the results (if any)

	Returns:

	an iterable with ROOT objects to save to the output file

	
class bamboo.plots.VariableBinning(binEdges)

	Variable-sized binning

	
__init__(binEdges)

	
	Parameters:

	binEdges – iterable with the edges. There will be len(binEges)-1 bins

Analysis modules

Minimally, bambooRun needs a class with a constructor that takes a single argument
(the list of command-line arguments that it does not recognize as its own), and a
run method that takes no arguments.
bamboo.analysismodules provides more interesting base classes, starting from
AnalysisModule, which implements a large part of
the common functionality for loading samples and distributing worker tasks.
HistogramsModule specializes this further
for modules that output stack histograms, and
NanoAODHistoModule supplements this
with loading the decorations for NanoAOD, and merging of the counters for generator weights etc.

Note

When defining a base class that should also be usable
for other things than only making plots or only making skims
(e.g. both of these) it should not inherit from
HistogramsModule or
SkimmerModule
(but the concrete classes should); otherwise a concrete class
may end up inheriting from both (at which point the method
resolution order will decide whether it behaves as a skimmer
or a plotter, and the result may not be obvious).

A typical case should look like this:

class MyBaseClass(NanoAODModule):
 ... # define addArgs, prepareTree etc.
class MyPlotter(MyBaseClass, HistogramsModule):
 ...
class MySkimmer(MyBaseClass, SkimmerModule):
 ...

	
class bamboo.analysismodules.AnalysisModule(args)

	Base analysis module

Adds common infrastructure for parsing analysis config files
and running on a batch system, with customization points for
concrete classes to implement

	
__init__(args)

	Constructor

set up argument parsing, calling addArgs()
and initialize()

	Parameters:

	args – list of command-line arguments that are not parsed by bambooRun

	
addArgs(parser)

	
	Hook for adding module-specific argument parsing (receives an argument group),
	parsed arguments are available in self.args afterwards

	
customizeAnalysisCfg(analysisCfg)

	
	Hook to modify the analysis configuration before jobs are created
	(only called in driver or non-distributed mode)

	
getATree(fileName=None, sampleName=None, config=None)

	
	Retrieve a representative TTree, e.g. for defining the plots or interactive inspection,
	and a dictionary with metadatas

	
getTasks(analysisCfg, resolveFiles=None, **extraOpts)

	Get tasks from analysis configs (and args), called in for driver or sequential mode

	Returns:

	a list of SampleTask instances

	
initialize()

	Hook for module-specific initialization (called from the constructor after parsing arguments)

	
postProcess(taskList, config=None, workdir=None, resultsdir=None)

	Do postprocessing on the results of the tasks, if needed

should be implemented by concrete modules

	Parameters:

	
	taskList – (inputs, output), kwargs for the tasks (list, string, and dictionary)

	config – parsed analysis configuration file

	workdir – working directory for the current run

	resultsdir – path with the results files

	
run()

	Main method

Depending on the arguments passed, this will:

	if -i or --interactive, call interact()
(which could do some initialization and start an IPython shell)

	if --distributed=worker call processTrees()
with the appropriate input, output, treename, lumi mask and run range

	if --distributed=driver or not given (sequential mode): parse the analysis configuration file,
construct the tasks with getTasks(), run them
(on a batch cluster or in the same process with
processTrees()),
and finally call postProcess() with the results.

	
class bamboo.analysismodules.DataDrivenBackgroundAnalysisModule(args)

	AnalysisModule with support for data-driven backgrounds

A number of contributions can be defined, each based on a list of samples or
groups needed to evaluate the contribution (typically just data) and a list
of samples or groups that should be left out when making the plot with
data-driven contributions.
The contributions should be defined in the analysis YAML file, with a block
datadriven (at the top level) that could look as follows:

datadriven:
 chargeMisID:
 uses: [data]
 replaces: [DY]
 nonprompt:
 uses: [data]
 replaces: [TTbar]

The --datadriven command-line switch then allows to specify a scenario
for data-driven backgrounds, i.e. a list of data-driven contributions to
include (all and none are also possible, the latter is the default
setting).
The parsed contributions are available as self.datadrivenContributions,
and the scenarios (each list is a list of contributions) as
self.datadrivenScenarios.

	
addArgs(parser)

	
	Hook for adding module-specific argument parsing (receives an argument group),
	parsed arguments are available in self.args afterwards

	
initialize()

	Hook for module-specific initialization (called from the constructor after parsing arguments)

	
class bamboo.analysismodules.DataDrivenBackgroundHistogramsModule(args)

	HistogramsModule with support for data-driven backgrounds

see the DataDrivenBackgroundAnalysisModule
class for more details about configuring data-driven backgrounds, and the
SelectionWithDataDriven class for ensuring the
necessary histograms are filled correctly.
HistogramsModule writes
the histograms for the data-driven contributions to different files.
This one runs plotIt for the different scenarios.

	
postProcess(taskList, config=None, workdir=None, resultsdir=None)

	Do postprocessing on the results of the tasks, if needed

should be implemented by concrete modules

	Parameters:

	
	taskList – (inputs, output), kwargs for the tasks (list, string, and dictionary)

	config – parsed analysis configuration file

	workdir – working directory for the current run

	resultsdir – path with the results files

	
class bamboo.analysismodules.DataDrivenContribution(name, config)

	Configuration helper class for data-driven contributions

An instance is constructed for each contribution in any of the scenarios by
the bamboo.analysismodules.DataDrivenBackgroundAnalysisModule.initialize()
method, with the name and configuration dictionary found in YAML file.
The usesSample():,
replacesSample(): and
modifiedSampleConfig():
methods can be customised for other things than using the data samples
to estimate a background contribution.

	
__init__(name, config)

	

	
modifiedSampleConfig(sampleName, sampleConfig, lumi=None)

	Construct the sample configuration for the reweighted counterpart of a sample

The default implementation assumes a data sample and turns it into a MC sample
(the luminosity is set as generated-events to avoid changing the normalisation).

	
replacesSample(sampleName, sampleConfig)

	Check if this contribution replaces a sample (name or group in ‘replaces’)

	
usesSample(sampleName, sampleConfig)

	Check if this contribution uses a sample (name or group in ‘uses’)

	
class bamboo.analysismodules.HistogramsModule(args)

	Base histogram analysis module

	
__init__(args)

	Constructor

Defines a plotList member variable, which will store a list of plots
(the result of definePlots(),
which will be called after prepareTree()).
The postProcess() method specifies
what to do with the results.

	
addArgs(parser)

	
	Hook for adding module-specific argument parsing (receives an argument group),
	parsed arguments are available in self.args afterwards

	
definePlots(tree, noSel, sample=None, sampleCfg=None)

	Main method: define plots on the trees (for a give systematic variation)

should be implemented by concrete modules, and return a list of
bamboo.plots.Plot objects.
The structure (name, binning) of the histograms should not depend on the sample, era,
and the list should be the same for all values
(the weights and systematic variations associated with weights or collections
may differ for data and different MC samples, so the actual set of histograms
will not be identical).

	Parameters:

	
	tree – decorated tree

	noSel – base selection

	sample – sample name (as in the samples section of the analysis configuration file)

	sampleCfg – that sample’s entry in the configuration file

	
getPlotList(fileHint=None, sampleHint=None, resultsdir=None, config=None)

	Helper method for postprocessing: construct the plot list

The path (and sample name) of an input file can be specified,
otherwise the results directory is searched for a skeleton tree.
Please note that in the latter case, the skeleton file is arbitrary
(in practice it probably corresponds to the first sample encountered
when running in sequential or --distributed=driver mode), so if
the postprocessing depends on things that are different between
samples, one needs to be extra careful to avoid surprises.

	Parameters:

	
	fileHint – name of an input file for one of the samples

	sampleHint – sample name for the input file passed in fileHint

	resultsdir – directory with the produced results files
(mandatory if no fileHint and sampleHint are passed)

	config – analysis config (to override the default - optional)

	
initialize()

	

	
makeBackendAndPlotList(inputFiles, tree=None, certifiedLumiFile=None, runRange=None, sample=None, sampleCfg=None, inputFileLists=None, backend=None)

	Prepare and plotList definition (internal helper)

	Parameters:

	
	inputFiles – input file names

	tree – key name of the tree inside the files

	certifiedLumiFile – lumi mask json file name

	runRange – run range to consider (for efficiency of the lumi mask)

	sample – sample name (key in the samples block of the configuration file)

	sampleCfg – that sample’s entry in the configuration file

	inputFileLists – names of files with the input files
(optional, to avoid rewriting if this already exists)

	backend – type of backend (lazy/default, debug, compiled, distributed)

	Returns:

	the backend and plot list (which can be None if run in
onlyprepare” mode)

	
mergeCounters(outF, infileNames, sample=None)

	Merge counters

should be implemented by concrete modules

	Parameters:

	
	outF – output file (TFile pointer)

	infileNames – input file names

	sample – sample name

	
postProcess(taskList, config=None, workdir=None, resultsdir=None)

	Postprocess: run plotIt

The list of plots is created if needed (from a representative file,
this enables rerunning the postprocessing step on the results files),
and then plotIt is executed

	
prepareTree(tree, sample=None, sampleCfg=None, backend=None)

	Create decorated tree, selection root (noSel), backend, and (run,LS) expressions

should be implemented by concrete modules

	Parameters:

	
	tree – decorated tree

	sample – sample name (as in the samples section of the analysis configuration file)

	sampleCfg – that sample’s entry in the configuration file

	backend – type of backend (lazy/default, debug, compiled, distributed)

	
readCounters(resultsFile)

	Read counters from results file

should be implemented by concrete modules, and return a dictionary with
counter names and the corresponding sums

	Parameters:

	resultsFile – TFile pointer to the results file

	
class bamboo.analysismodules.NanoAODHistoModule(args)

	
	A HistogramsModule for NanoAOD,
	with decorations and merging of counters from
NanoAODModule

	
__init__(args)

	Constructor

set up argument parsing, calling addArgs()
and initialize()

	Parameters:

	args – list of command-line arguments that are not parsed by bambooRun

	
class bamboo.analysismodules.NanoAODModule(args)

	
	A AnalysisModule extension for NanoAOD,
	adding decorations and merging of the counters

	
mergeCounters(outF, infileNames, sample=None)

	Merge the Runs trees

	
prepareTree(tree, sample=None, sampleCfg=None, description=None, backend=None)

	Add NanoAOD decorations, and create an RDataFrame backend

In addition to the arguments needed for the base class
prepareTree`() method,
a description of the tree, and settings for reading systematic variations
or corrections from alternative branches, or calculating these on the fly,
should be passed, such that the decorations can be constructed accordingly.

	Parameters:

	description – description of the tree format, and configuration for
reading or calculating systematic variations and corrections,
a NanoAODDescription instance
(see also bamboo.treedecorators.NanoAODDescription.get())

	
readCounters(resultsFile)

	Sum over each leaf of the (merged) Runs tree (except run)

	
class bamboo.analysismodules.NanoAODSkimmerModule(args)

	
	A SkimmerModule for NanoAOD,
	with decorations and merging of counters from
NanoAODModule

	
__init__(args)

	Constructor

set up argument parsing, calling addArgs()
and initialize()

	Parameters:

	args – list of command-line arguments that are not parsed by bambooRun

	
class bamboo.analysismodules.SkimmerModule(args)

	Base skimmer module

Left for backwards-compatibility, please use a
HistogramsModule that defines one or more
bamboo.plots.Skim products instead.

	
addArgs(parser)

	
	Hook for adding module-specific argument parsing (receives an argument group),
	parsed arguments are available in self.args afterwards

	
definePlots(tree, noSel, sample=None, sampleCfg=None)

	Main method: define plots on the trees (for a give systematic variation)

should be implemented by concrete modules, and return a list of
bamboo.plots.Plot objects.
The structure (name, binning) of the histograms should not depend on the sample, era,
and the list should be the same for all values
(the weights and systematic variations associated with weights or collections
may differ for data and different MC samples, so the actual set of histograms
will not be identical).

	Parameters:

	
	tree – decorated tree

	noSel – base selection

	sample – sample name (as in the samples section of the analysis configuration file)

	sampleCfg – that sample’s entry in the configuration file

	
defineSkimSelection(tree, noSel, sample=None, sampleCfg=None)

	Main method: define a selection for the skim

should be implemented by concrete modules, and return a
bamboo.plots.Selection object

	Parameters:

	
	tree – decorated tree

	noSel – base selection

	sample – sample name (as in the samples section of the analysis configuration file)

	sampleCfg – that sample’s entry in the configuration file

	Returns:

	the skim bamboo.plots.Selection, and a map { name: expression }
of branches to store (to store all the branches of the original tree in addition,
pass –keepOriginalBranches to bambooRun; individual branches can be added
with an entry name: None entry)

Tree decoratorator customisation

Expressions are constructed by executing python code on decorated versions of
decorated trees. The bamboo.treedecorators module contains helper
methods to do so for commonly used formats, e.g. decorateNanoAOD()
for CMS NanoAOD.

	
class bamboo.treedecorators.NanoSystematicVarSpec(nomName=None, origName=None, exclVars=None, isCalc=False)

	
	Interface for classes that specify how to incorporate systematics
	or on-the-fly corrections in the decorated tree

See NanoAODDescription and decorateNanoAOD()

	
appliesTo(name)

	
	Return true if this systematic variation requires action
	for this variable, group, or collection

	
changesTo(name)

	Return the new name(s) for a collection or group (assuming appliesTo(name) is True)

	
getVarName(branchName, collgrpname=None)

	
	Get the variable name and variation corresponding to an
	(unprefixed, in case of groups or collections) branch name

	
nomName(name)

	Nominal systematic variation name for a group/collection

	
exclVars(name)

	Systematic variations to exclude for a group/collection

	
class bamboo.treedecorators.ReadVariableVarWithSuffix(commonName, sep='_', nomName='nominal', exclVars=None)

	Read variations of a single branch from branches with the same name with a suffix

	
appliesTo(name)

	True if name starts with the prefix

	
getVarName(branchName, collgrpname=None)

	Split into prefix and variation (if present, else nominal)

	
class bamboo.treedecorators.ReadJetMETVar(jetsName, metName, jetsNomName='nom', jetsOrigName='raw', metNomName='', metOrigName='raw', jetsExclVars=None, metExclVars=None, bTaggers=None, bTagWPs=None)

	Read jet and MET kinematic variations from different branches for automatic systematic uncertainties

	Parameters:

	
	jetsName – jet collection prefix (e.g. "Jet")

	metName – MET prefix (e.g. "MET")

	jetsNomName – name of the nominal jet variation ("nom" by default)

	jetsOrigName – name of the original jet variation ("raw" by default)

	metNomName – name of the nominal jet variation ("nom" by default)

	metOrigName – name of the original jet variation ("raw" by default)

	jetsExclVars – jet variations that are present but should be ignored
(if not specified, only jetsOrigName is taken, so if specified
this should usually be added explicitly)

	metExclVars – MET variations that are present but should be ignored
(if not specified, only metOrigName is taken, so if specified
this should usually be added explicitly)

	bTaggers – list of b-tagging algorithms, for scale factors stored in a branch

	bTagWPs – list of b-tagging working points, for scale factors stored in a branch
(shape should be included here, if wanted)

Note

The implementation of automatic systematic variations treats
“xyzup” and “xyzdown” independently (since this is the most flexible).
If a source of systematic uncertainty should be excluded, both the “up”
and “down” variation should then be added to the list of variations to
exclude (jetsExclVars or metExclVars).

	
appliesTo(name)

	
	Return true if this systematic variation requires action
	for this variable, group, or collection

	
nomName(name)

	Nominal systematic variation name for a group/collection

	
exclVars(name)

	Systematic variations to exclude for a group/collection

	
getVarName(nm, collgrpname=None)

	
	Get the variable name and variation corresponding to an
	(unprefixed, in case of groups or collections) branch name

	
class bamboo.treedecorators.NanoReadRochesterVar(systName=None)

	Read precalculated Rochester correction variations

	Parameters:

	systName – name of the systematic uncertainty, if variations should be enabled

	
appliesTo(name)

	
	Return true if this systematic variation requires action
	for this variable, group, or collection

	
getVarName(nm, collgrpname=None)

	
	Get the variable name and variation corresponding to an
	(unprefixed, in case of groups or collections) branch name

	
class bamboo.treedecorators.NanoReadTauESVar(systName=None)

	Read precalculated Tau energy scale variations

	Parameters:

	systname – name of the systematic uncertainty, if variations should be enabled

	
appliesTo(name)

	
	Return true if this systematic variation requires action
	for this variable, group, or collection

	
getVarName(nm, collgrpname=None)

	
	Get the variable name and variation corresponding to an
	(unprefixed, in case of groups or collections) branch name

	
class bamboo.treedecorators.CalcCollectionsGroups(nomName='nominal', origName='raw', exclVars=None, changes=None, **colsAndAttrs)

	
	NanoSystematicVarSpec for on-the-fly corrections
	and systematic variation calculation

	
appliesTo(name)

	
	Return true if this systematic variation requires action
	for this variable, group, or collection

	
changesTo(name)

	Return the new name(s) for a collection or group (assuming appliesTo(name) is True)

	
getVarName(nm, collgrpname=None)

	
	Get the variable name and variation corresponding to an
	(unprefixed, in case of groups or collections) branch name

	
class bamboo.treedecorators.NanoAODDescription(groups=None, collections=None, systVariations=None)

	Description of the expected NanoAOD structure, and configuration for systematics and corrections

	Essentially, a collection of three containers:
	
	collections a list of collections (by the name of the length leaf)

	groups a list of non-collection groups (by prefix, e.g. HLT_)

	
	systVariations a list of NanoSystematicVarSpec instances,
	to configure reading systematics variations from branches, or calculating them on the fly

The recommended way to obtain a configuration is from the factory method get()

	
static get(tag, year='2016', isMC=False, addGroups=None, removeGroups=None, addCollections=None, removeCollections=None, systVariations=None)

	Create a suitable NanoAODDescription instance based on a production version

A production version is defined by a tag, data-taking year, and a flag
to distinguish data from simulation.
Any number of groups or collections can be added or removed from this.
The systVariations option

	Example:

	

>>> decorateNanoAOD(tree, NanoAODDescription.get(
>>> "v5", year="2016", isMC=True,
>>> systVariations=[nanoRochesterCalc, nanoJetMETCalc]))
>>> decorateNanoAOD(tree, NanoAODDescription.get(
>>> "v5", year="2017", isMC=True,
>>> systVariations=[nanoPUWeightVar, nanoReadJetMETVar_METFixEE2017]))

	Parameters:

	
	tag – production version (e.g. “v5”)

	year – data-taking year

	isMC – simulation or not

	addGroups – (optional) list of groups of leaves to add
(e.g. ["L1_", "HLT_"], if not present)

	removeGroups – (optional) list of groups of leaves to remove
(e.g. ["L1_"], if skimmed)

	addCollections – (optional) list of containers to add
(e.g. ["nMyJets"])

	removeCollections – (optional) list of containers to remove
(e.g. ["nPhoton", "nTau"])

	systVariations – list of correction or systematic variation on-the-fly calculators
or configurations to add (NanoSystematicVarSpec instances)

See also decorateNanoAOD()

	
bamboo.treedecorators.decorateNanoAOD(aTree, description=None)

	Decorate a CMS NanoAOD Events tree

Variation branches following the NanoAODTools conventions (e.g. Jet_pt_nom)
are automatically used (but calculators for the same collection take
precendence, if requested).

	Parameters:

	
	aTree – TTree to decorate

	description – description of the tree format, and configuration for reading
or calculating systematic variations and corrections,
a NanoAODDescription instance
(see also NanoAODDescription.get())

	
bamboo.treedecorators.decorateCMSPhase2SimTree(aTree, isMC=True)

	Decorate a flat tree as used for CMS Phase2 physics studies

Helper functions

The bamboo.analysisutils module bundles a number of more
specific helper methods that use the tree decorators and integrate with
other components, connect to external services, or are factored out of the
classes in bamboo.analysismodules to facilitate reuse.

	
class bamboo.analysisutils.YMLIncludeLoader(stream)

	
	Custom yaml loading to support including config files.
	Use !include (file) to insert content of file at that position.

	
bamboo.analysisutils.addLumiMask(sel, jsonName, runRange=None, runAndLS=None, name='goodlumis')

	Refine selection with a luminosity block filter

Typically applied directly to the root selection (for data).
runAndLS should be a tuple of expressions with the run number and luminosity block ID.
The run range is used to limit the part of the JSON file to consider,
see the LumiMask helper class for details.

	
bamboo.analysisutils.addPrintout(selection, funName, *args)

	Call a method with debugging printout, as part of the RDataFrame graph

This method is only meant to work with the default backend, since it works
by inserting a Filter node that lets all events pass.

	Parameters:

	
	selection – selection for which to add the printout.
The function call will be added to the RDataFrame graph in its current state,
so if a plot causes a problem this method should be called before defining it.

	funName – name of a C++ method to call.
This method should always return true, and can take any number of arguments.

	args – arguments to pass to the function

The following example would print the entry and event number
for each event that passes some selection.

	Example:

	

>>> from bamboo.root import gbl
>>> gbl.gInterpreter.Declare("""
... bool bamboo_printEntry(long entry, long event) {
... std::cout << "Processing entry #" << entry << ": event " << event << std::endl;
... }""")
>>> addPrintout(sel, "bamboo_printEntry", op.extVar("ULong_t", "rdfentry_"), t.event)

	
bamboo.analysisutils.configureJets(variProxy, jetType, jec=None, jecLevels='default', smear=None, useGenMatch=True, genMatchDR=0.2, genMatchDPt=3.0, jesUncertaintySources=None, regroupTag='', uncertaintiesFallbackJetType=None, splitJER=False, addHEM2018Issue=False, enableSystematics=None, subjets=None, mcYearForFatJets=None, isTau21DDT=False, jms=None, jmr=None, gms=None, gmr=None, cachedir=None, mayWriteCache=False, isMC=False, backend=None, uName='')

	Reapply JEC, set up jet smearing, or prepare JER/JES uncertainties collections

	Parameters:

	
	variProxy – jet variations proxy, e.g. tree._Jet

	jetType – jet type, e.g. AK4PFchs

	smear – tag of resolution (and scalefactors) to use for smearing
(no smearing is done if unspecified)

	jec – tag of the new JEC to apply, or for the JES uncertainties
(pass an empty list to jecLevels to produce only the latter without reapplying the JEC)

	jecLevels – list of JEC levels to apply (if left out the recommendations are used:
L1FastJet, L2Relative, L3Absolute, and also L2L3Residual for data)

	jesUncertaintySources – list of jet energy scale uncertainty sources (see the
JECUncertaintySources twiki [https://twiki.cern.ch/twiki/bin/viewauth/CMS/JECUncertaintySources]),
"All", or "Merged", for all regrouped uncertainties
(in which case regroupTag can be specified)

	regroupTag – version of the regrouped uncertainties to use

	uncertaintiesFallbackJetType – jet type from which to use the (regrouped) JES uncertainties
if those for jetType are not found (e.g. AK4PFchs, see
JME HN [https://hypernews.cern.ch/HyperNews/CMS/get/jes/988/1.html])

	enableSystematics – filter systematics variations to enable
(collection of names or callable that takes the variation name;
default: all that are available for MC, none for data)

	useGenMatch – use matching to generator-level jets for resolution smearing

	genMatchDR – DeltaR for generator-level jet matching
(half the cone size is recommended, default is 0.2)

	genMatchDPt – maximal relative PT difference
(in units of the resolution) between reco and gen jet

	splitJER – vary the JER uncertainty independently in six kinematic bins (see the
JER uncertainty twiki [https://twiki.cern.ch/twiki/bin/view/CMS/JetResolution#Run2_JER_uncertainty_correlation])

	addHEM2018Issue – add a JES uncertainty for the HEM issue in 2018 (see
this hypernews post [https://hypernews.cern.ch/HyperNews/CMS/get/JetMET/2000.html])

	subjets – subjets proxy (tree.SubJet)

	mcYearForFatJets – data-taking year for fat jet parameters
((softdrop) mass scale and resolution, these should not be passed for data).
They can also be passed explicitly, see the following parameters.
If none are passed, no jet mass scale corrections are applied.

	isTau21DDT – if used in combinaton with mcYearForFatJets,
will use different values for the softdrop mass.
Warning: differently from nanoAOD-Tools, these will be propagated to the JEC uncertainties,
and this combination of settings has not been validated.
Please check carefully if you need to use this.

	jms – jet mass scale correction (nominal, up, down), for fat jets

	jmr – jet mass resolution (nominal, up, down), for fat jets

	gms – jet groomed mass scale correction (nominal, up, down), for fat jets,
same as jms by default

	gmr – jet groomed mass resolution (nominal, up, down), for fat jets,
same as jmr by default

	cachedir – alternative root directory to use for the txt files cache,
instead of $XDG_CACHE_HOME/bamboo (usually ~/.cache/bamboo)

	mayWriteCache – flag to indicate if this task is allowed to write to the cache status file
(set to False for worker tasks to avoid corruption due to concurrent writes)

	isMC – MC or not

	backend – backend pointer
(returned from prepareTree())

	uName – [deprecated, ignored]
unique name for the correction calculator (sample name is a safe choice)

	
bamboo.analysisutils.configureRochesterCorrection(variProxy, paramsFile, isMC=False, backend=None, uName='')

	Apply the Rochester correction for muons

	Parameters:

	
	variProxy – muon variatons proxy, e.g. tree.._Muon for NanoAOD

	paramsFile – path of the text file with correction parameters

	isMC – MC or not

	backend – backend pointer
(returned from prepareTree())

	uName – [deprecated, ignored]
unique name for the correction calculator (sample name is a safe choice)

	
bamboo.analysisutils.configureSVfitCalculator(pathToSVfit='', backend=None)

	Configure SVfit

	Parameters:

	
	pathToSVfit – path to your SVfit installation

	backend – backend pointer
(returned from prepareTree())

	
bamboo.analysisutils.configureTauESCorrection(variProxy, paramsFile, tauIdAlgo, backend=None)

	Apply the energy correction for taus

	Parameters:

	
	variProxy – tau variatons proxy, e.g. tree._Tau for NanoAOD

	paramsFile – path of the json file with correction parameters

	tauIdAlgo – name of the algorithm for the tau identification, e.g. “DeepTau2017v2p1”

	backend – backend pointer
(returned from prepareTree())

	
bamboo.analysisutils.configureType1MET(variProxy, jec=None, smear=None, isT1Smear=False, useGenMatch=True, genMatchDR=0.2, genMatchDPt=3.0, jesUncertaintySources=None, regroupTag='', splitJER=False, addHEM2018Issue=False, enableSystematics=None, cachedir=None, mayWriteCache=False, isMC=False, backend=None, uName='')

	Reapply JEC, set up jet smearing, or prepare JER/JES uncertainties collections

	Parameters:

	
	variProxy – MET variations proxy, e.g. tree._MET

	smear – tag of resolution (and scalefactors) to use for smearing
(no smearing is done if unspecified)

	isT1Smear – T1Smear (smeared as nominal, all variations with respect to that) if True,
otherwise T1 (JES variations with respect to the unsmeared MET,
jerup and jerdown variations are nominally smeared)

	jec – tag of the new JEC to apply, or for the JES uncertainties

	jesUncertaintySources – list of jet energy scale uncertainty sources (see the
JECUncertaintySources twiki [https://twiki.cern.ch/twiki/bin/viewauth/CMS/JECUncertaintySources]),
"All", or "Merged", for all regrouped uncertainties
(in which case regroupTag can be specified)

	regroupTag – version of the regrouped uncertainties to use

	enableSystematics – filter systematics variations to enable
(collection of names or callable that takes the variation name;
default: all that are available for MC, none for data)

	useGenMatch – use matching to generator-level jets for resolution smearing

	genMatchDR – DeltaR for generator-level jet matching
(half the cone size is recommended, default is 0.2)

	genMatchDPt – maximal relative PT difference
(in units of the resolution) between reco and gen jet

	splitJER – vary the JER uncertainty independently in six kinematic bins (see the
JER uncertainty twiki [https://twiki.cern.ch/twiki/bin/view/CMS/JetResolution#Run2_JER_uncertainty_correlation])

	addHEM2018Issue – add a JES uncertainty for the HEM issue in 2018 (see
this hypernews post [https://hypernews.cern.ch/HyperNews/CMS/get/JetMET/2000.html])

	cachedir – alternative root directory to use for the txt files cache,
instead of $XDG_CACHE_HOME/bamboo (usually ~/.cache/bamboo)

	mayWriteCache – flag to indicate if this task is allowed to write to the cache status file
(set to False for worker tasks to avoid corruption due to concurrent writes)

	be – backend pointer

	uName – [deprecated, ignored]
unique name for the correction calculator (sample name is a safe choice)

	isMC – MC or not

	
bamboo.analysisutils.forceDefine(arg, selection, includeSub=True)

	Force the definition of an expression as a column at a selection stage

Use only for really computation-intensive operations that need to be precalculated

	Parameters:

	
	arg – expression to define as a column

	selection – Selection for which the expression should be defined

	includeSub – also precalculate for data-driven background ‘shadow’ selections
(bamboo.plots.SelectionWithSub ‘sub’-selections)

	
bamboo.analysisutils.getAFileFromAnySample(samples, resolveFiles=None, cfgDir='.')

	Helper method: get a file from any sample (minimizing the risk of errors)

Tries to find any samples with:
- a list of files
- a cache file
- a SAMADhi path
- a DAS path

If successful, a single read / query is sufficient to retrieve a file

	
bamboo.analysisutils.loadPlotIt(config, plotList, eras=None, workdir='.', resultsdir='.', readCounters=<function <lambda>>, vetoFileAttributes=None, plotDefaults=None)

	Load the plotit configuration with the plotIt python library

The plotIt YAML file writing and parsing is skipped in this case
(to write the file, the writePlotIt() method
should be used, with the same arguments).

	Parameters:

	
	config – parsed analysis configuration. Only the configuration
(if present) and eras sections (to get the luminosities) are read.

	plotList – list of plots to convert
(name and plotopts, combined with the default style)

	eras – list of eras to consider
(None for all that are in the config)

	workdir – output directory

	resultsdir – directory with output ROOT files with histograms

	readCounters – method to read the sum of event weights from an output file

	vetoFileAttributes – list of per-sample keys that should be ignored
(those specific to the bamboo part, e.g. job splitting and DAS paths)

	plotDefaults – plot defaults to add (added to those from
config["plotIt"]["plotdefaults"], with higher precedence if present in both)

	
bamboo.analysisutils.makeMultiPrimaryDatasetTriggerSelection(sampleName, datasetsAndTriggers)

	Construct a selection that prevents processing multiple times (from different primary datasets)

If an event is passes triggers for different primary datasets, it will be taken
from the first of those (i.e. the selection will be ‘passes one of the triggers that
select it for this primary dataset, and not for any of those that come before in the
input dictionary).

	Parameters:

	
	sampleName – sample name

	datasetsAndTriggers – a dictionary {primary-dataset, set-of-triggers}, where
the key is either a callable that takes a sample name and returns true in case
it originates from the corresponding primary datasets, or a string that is
the first part of the sample name in that case. The value (second item) can be
a single expression (e.g. a trigger flag, or an OR of them), or a list of those
(in which case an OR-expression is constructed from them).

	Returns:

	an expression to filter the events in the sample with given name

	Example:

	

>>> if not self.isMC(sample):
>>> trigSel = noSel.refine("trigAndPrimaryDataset",
>>> cut=makeMultiPrimaryDatasetTriggerSelection(sample, {
>>> "DoubleMuon" : [t.HLT.Mu17_TrkIsoVVL_Mu8_TrkIsoVVL,
>>> t.HLT.Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL],
>>> "DoubleEG" : t.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ,
>>> "MuonEG" : [t.HLT.Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL,
>>> t.HLT.Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL]
>>> }))

	
bamboo.analysisutils.makePileupWeight(puWeights, numTrueInteractions, systName=None, nameHint=None, sel=None, defineOnFirstUse=True)

	Construct a pileup weight for MC, based on the weights in a JSON file

	Parameters:

	
	puWeights – path of the JSON file with weights (binned in NumTrueInteractions)
for cp3-llbb JSON, or tuple of JSON path and correction name (correctionlib JSON)

	numTrueInteractions – expression to get the number of true interactions
(Poissonian expectation value for an event)

	systName – name of the associated systematic nuisance parameter

	sel – a selection in the current graph (only used to retrieve a pointer to the backend)

	
bamboo.analysisutils.printCutFlowReports(config, reportList, workdir='.', resultsdir='.', suffix=None, readCounters=<function <lambda>>, eras=('all', None), verbose=False)

	Print yields to the log file, and write a LaTeX yields table for each

Samples can be grouped (only for the LaTeX table) by specifying the
yields-group key (overriding the regular groups used for plots).
The sample (or group) name to use in this table should be specified
through the yields-title sample key.

In addition, the following options in the plotIt section of
the YAML configuration file influence the layout of the LaTeX yields table:

	yields-table-stretch: \arraystretch value, 1.15 by default

	
	yields-table-align: orientation, h (default), samples in rows,
	or v, samples in columns

	yields-table-text-align: alignment of text in table cells (default: c)

	
	yields-table-numerical-precision-yields: number of digits after
	the decimal point for yields (default: 1)

	
	yields-table-numerical-precision-ratio: number of digits after
	the decimal point for ratios (default: 2)

	
bamboo.analysisutils.readEnvConfig(explName=None)

	Read computing environment config file (batch system, storage site etc.)

For using a batch cluster, the [batch] section should have a ‘backend’ key,
and there should be a section with the name of the backend (slurm, htcondor…),
see bamboo.batch_<backend> for details.
The storage site information needed to resolve the PFNs for datasets retrieved from DAS
should be specified under the [das] section (sitename and storageroot).

	
bamboo.analysisutils.runPlotIt(cfgName, workdir='.', plotsdir='plots', plotIt='plotIt', eras=('all', None), verbose=False)

	Run plotIt

	Parameters:

	
	cfgName – plotIt YAML config file name

	workdir – working directory
(also the starting point for finding the histograms files, --i option)

	plotsdir – name of the plots directory inside workdir
(plots, by default)

	plotIt – path of the plotIt executable

	eras – (mode, eras), mode being one of "split", "combined", or "all"
(both of the former), and eras a list of era names, or None for all

	verbose – print the plotIt command being run

	
bamboo.analysisutils.splitVariation(variProxy, variation, regions, nomName='nom')

	Split a systematic variation between (kinematic) regions (to decorrelate the nuisance parameter)

	Parameters:

	
	variProxy – jet variations proxy, e.g. tree._Jet

	variation – name of the variation that should be split (e.g. “jer”)

	regions – map of region names and selections
(for non-collection objects: boolean expression, for collection objects:
a callable that returns a boolean for an item from the collection)

	nomName – name of the nominal variation (“nom” for postprocessed, “nominal” for calculator)

	Example:

	

>>> splitVariation(tree._Jet, "jer", {"forward" : lambda j : j.eta > 0.,
>>> "backward" : lambda j : j.eta < 0.})

	
bamboo.analysisutils.writePlotIt(config, plotList, outName, eras=None, workdir='.', resultsdir='.', readCounters=<function <lambda>>, vetoFileAttributes=None, plotDefaults=None)

	Combine creation and saving of a plotIt config file

for convenience inside a HistogramsModule,
the individual parts are also available in bamboo.analysisutils.

	Parameters:

	
	config – parsed analysis configuration. Only the configuration (if present)
and eras sections (to get the luminosities) are read.

	plotList – list of plots to convert
(name and plotopts, combined with the default style)

	outName – output YAML config file name

	eras – valid era list

	workdir – output directory

	resultsdir – directory with output ROOT files with histograms

	readCounters – method to read the sum of event weights from an output file

	vetoFileAttributes – list of per-sample keys that should be ignored
(those specific to the bamboo part, e.g. job splitting and DAS paths)

	plotDefaults – plot defaults to add (added to those from
config["plotIt"]["plotdefaults"], with higher precedence if present in both)

Scale factors

The bamboo.scalefactors module contains helper methods
for configuring scale factors, fake rates etc.

The basic configuration parameter is the JSON file path for a set of scalefactors.
There two basic types are

	lepton scale factors (dependent on a number of object variables, e.g. pt and eta),

	jet (b-tagging) scale factors (grouped set for different flavours, for convenience)

Different values (depending on the data-taking period)
can be taken into account by weighting or by randomly sampling.

	
class bamboo.scalefactors.BtagSF(taggerName, csvFileName, wp=None, sysType='central', otherSysTypes=None, measurementType=None, getters=None, jesTranslate=None, sel=None, uName=None)

	Helper for b- and c-tagging scalefactors using the BTV POG reader

	
__call__(jet, nomVar=None, systVars=None)

	Evaluate the scalefactor for a jet

Please note that this only gives the applicable scalefactor:
to obtain the event weight one of the recipes in the
POG twiki [https://twiki.cern.ch/twiki/bin/viewauth/CMS/BTagSFMethods]
should be used.

By default the nominal and systematic variations are taken from
the bamboo.scalefactors.BtagSF instance, but they can be
overriden with the nomVar and systVars keyword arguments.
Please note that when using split uncertainties (e.g. for the reshaping
method) some uncertainties only apply to specific jet flavours
(e.g. c-jets) and the csv file contains zeroes for the other flavours.
Then the user code should check the jet flavours, and call this method
with the appropriate list of variations for each.

	
__init__(taggerName, csvFileName, wp=None, sysType='central', otherSysTypes=None, measurementType=None, getters=None, jesTranslate=None, sel=None, uName=None)

	
	Declare a BTagCalibration (if needed) and BTagCalibrationReader (unique, based on uName),
	and decorate for evaluation

Warning

This function is deprecated.
Use correctionlib [https://cms-nanoaod.github.io/correctionlib/] and
helpers in scalefactors instead.

	Parameters:

	
	taggerName – first argument for BTagCalibration

	csvFileName – name of the CSV file with scalefactors

	wp – working point (used as BTagEntry::OP_{wp.upper()})

	sysType – nominal value systematic type ("central", by default)

	otherSysTypes – other systematic types to load in the reader

	measurementType – dictionary with measurement type per true flavour (B, C, and UDSG),
or a string if the same for all (if not specified,
"comb" will be used for b- and c-jets, and incl for light-flavour jets)

	getters – dictionary of methods to get the kinematics and classifier for a jet
(the keys Pt, Eta, JetFlavour, and Discri are used.
For the former three, the defaults are for NanoAOD)

	jesTranslate – translation function for JEC systematic variations,
from the names in the CSV file to those used for the jets
(the default should work for on-the-fly corrections)

	sel – a selection in the current graph

	uName – unique name, to declare the reader (e.g. sample name)

	
bamboo.scalefactors.get_bTagSF_fixWP(json_path, tagger, wp, flavour, sel, jet_pt_variation=None, heavy_method='comb', syst_prefix='btagSF_fixWP_', decorr_wps=False, decorr_eras=False, era=None, full_scheme=False, syst_mapping=None, defineOnFirstUse=True)

	Build correction evaluator for fixed working point b-tagging scale factors

Loads the b-tagging scale factors as correction object from the JSON file,
configures the systematic variations, and returns a callable that
can be evaluated on a jet to return the scale factor.

	Parameters:

	
	json_path – JSON file path

	tagger – name of the tagger inside the JSON (not the same as in the event!)

	wp – working point of the tagger (“L”, “M”, “T”)

	flavour – hadron flavour of the jet (0, 4, 5)

	sel – a selection in the current graph (only used to retrieve a pointer to the backend)

	jet_pt_variation – if specified, only use that specific systematic variation (e.g. the nominal)
of the jet pt to evaluate the scale factors. By default, the scale factors are evaluated for
each variation.

	heavy_method – B-tagging measurement method for heavy-flavour jets (“comb” or “mujets”).
For light jets, there is only the “incl” method.

	syst_prefix – Prefix to prepend to the name of all resulting the b-tagging systematic variations.
Variations for light or heavy jets will be prefixed resp.
by {syst_prefix}light or {syst_prefix}heavy (unless the full scheme is used).

	decorr_wps – If True, insert the working point into the systematic name for
the uncorrelated/statistical component. Otherwise, all working points will be taken as fully
correlated when using several in the analysis.

	decorr_eras – If True, use the scale factor uncertainties split into “uncorrelated”
and “correlated” parts, and insert the era name into the variation names.
If False, only use the total scale factor uncertainties (not split).

	era – Name of era, used in the name of systematic variations if one of decorr_eras
or full_scheme is True.

	full_scheme – If True, use split uncertainty sources as specified in the full_scheme argument

	syst_mapping – Dictionary used to list the systematics to consider, and
to map the naming of the full-scheme b-tagging uncertainties
to variations defined elsewhere in the analysis, for varying them together when needed
(see example below).

	defineOnFirstUse – see description in get_correction()

	Returns:

	a callable that takes a jet and returns the correction
(with systematic variations as configured here)
obtained by evaluating the b-tagging scale factors on the jet

	Example:

	

>>> btvSF_b = get_bTagSF_fixWP("btv.json", "deepJet", "M", 5, sel, syst_prefix="btagSF_",
>>> era="2018UL", full_scheme=True,
>>> syst_mapping={
>>> "pileup": "pileup",
>>> "type3": None,
>>> "jer0": "jer",
>>> "jer1": "jer"
>>> })

	Will result in the following systematic uncertainties:
	
	btagSF_statistic_2018UL{up/down}: mapped to {up/down}_statistic in the JSON

	
	btagSF_pileup{up/down}: mapped to {up/down}_pileup in the JSON, and correlated
	with the pileup{up/down} variations in the analysis

	btagSF_type3{up/down}: mapped to {up/down}_type3 in the JSON

	
	btagSF_jer0{up/down}: mapped to {up/down}_jer in the JSON, and correlated
	with the jer0{up/down} variations in the analysis

	
	btagSF_jer1{up/down}: mapped to {up/down}_jer in the JSON, and correlated
	with the jer1{up/down} variations in the analysis

>>> btvSF_b = get_bTagSF_fixWP("btv.json", "deepJet", "M", 5, sel, syst_prefix="btagSF_",
>>> era="2018UL", decorr_wps=True, decorr_eras=True)

	Will result in the following systematic uncertainties:
	
	btagSF_heavy_M_2018UL{up/down}: mapped to {up/down}_uncorrelated in the JSON

	btagSF_heavy{up/down}: mapped to {up/down}_correlated in the JSON

	
bamboo.scalefactors.get_bTagSF_itFit(json_path, tagger_json, tagger_jet, flavour, sel, jet_pt_variation=None, syst_prefix='btagSF_shape_', decorr_eras=False, era=None, syst_mapping=None, defineOnFirstUse=True)

	Build correction evaluator for continuous (iterativeFit) b-tagging scale factors

Loads the b-tagging scale factors as correction object from the JSON file,
configures the systematic variations, and returns a callable that
can be evaluated on a jet to return the scale factor.

	Parameters:

	
	json_path – JSON file path

	tagger_json – name of the tagger inside the JSON

	tagger_jet – name of the tagger in the tree

	flavour – hadron flavour of the jet (0, 4, 5)

	sel – a selection in the current graph (only used to retrieve a pointer to the backend)

	jet_pt_variation – see description in get_bTagSF_fixWP()

	syst_prefix – Prefix to prepend to the name of all resulting the b-tagging systematic variations.

	decorr_eras – If True, insert the era into the variation name for statistical uncertainties

	era – Name of era, used in the name of systematic variations if decorr_eras is True

	syst_mapping – see description in get_bTagSF_fixWP(),
with the difference that here the “basic” (non-JES-related) variations are already included
no matter what.

	defineOnFirstUse – see description in get_correction()

	Returns:

	a callable that takes a jet and returns the correction
(with systematic variations as configured here)
obtained by evaluating the b-tagging scale factors on the jet

	Example:

	

>>> btvSF_b = get_bTagSF_itFit("btv.json", "deepJet", "btagDeepFlavB", 5, sel, syst_prefix="btagSF_",
>>> decorr_eras=True, era="2018UL",
>>> syst_mapping={"jesTotal": "jes"})

	Will result in the following systematic uncertainties:
	
	btagSF_hfstats1_2018UL{up/down}: mapped to {up/down}_hfstats1 in the JSON

	btagSF_hfstats2_2018UL{up/down}: mapped to {up/down}_hfstats2 in the JSON

	btagSF_lfstats1_2018UL{up/down}: mapped to {up/down}_lfstats1 in the JSON

	btagSF_lfstats2_2018UL{up/down}: mapped to {up/down}_lfstats2 in the JSON

	btagSF_hf{up/down}: mapped to {up/down}_hf in the JSON

	btagSF_lf{up/down}: mapped to {up/down}_lf in the JSON

	
	btagSF_jesTotal{up/down}: mapped to {up/down}_jes in the JSON, and correlated
	with the jesTotal{up/down} variations in the analysis

(for c jets, the hf and lf variations are absent and replaced by cferr1 and cferr2)

	
bamboo.scalefactors.get_correction(path, correction, params=None, systParam=None, systNomName='nominal', systVariations=None, systName=None, defineOnFirstUse=True, sel=None)

	Load a correction from a CMS JSON file

The JSON file is parsed with correctionlib [https://cms-nanoaod.github.io/correctionlib/].
The contents and structure of a JSON file can be checked with the
correction script, e.g. correction summary sf.json

	Parameters:

	
	path – JSON file path

	correction – name of the correction inside CorrectionSet in the JSON file

	params – parameter definitions, a dictionary of values or functions

	systParam – name of the parameter (category axis) to use for systematic variations

	systNomName – name of the systematic category axis to use as nominal

	systVariations – systematic variations list or {variation: name_in_json}

	systName – systematic uncertainty name (to prepend to names, if ‘up’ and ‘down’)

	defineOnFirstUse – wrap with defineOnFirstUse()
(to define as a column and reuse afterwards),
this is enabled by default since it is usually more efficient

	sel – a selection in the current graph (only used to retrieve a pointer to the backend)

	Returns:

	a callable that takes (object) and returns the correction
(with systematic variations, if present and unless a specific variation is requested)
obtained by evaluating the remaining parameters with the object

	Example:

	

>>> elIDSF = get_correction("EGM_POG_SF_UL.json", "electron_cutbased_looseID",
>>> params={"pt": lambda el : el.pt, "eta": lambda el : el.eta},
>>> systParam="weight", systNomName="nominal", systName="elID", systVariations=("up", "down")
>>>)
>>> looseEl = op.select(t.Electron, lambda el : el.looseId)
>>> withDiEl = noSel.refine("withDiEl",
>>> cut=(op.rng_len(looseEl) >= 2),
>>> weight=[elIDSF(looseEl[0]), elIDSF(looseEl[1])]
>>>)

	
bamboo.scalefactors.get_scalefactor(objType, key, combine=None, additionalVariables=None, sfLib=None, paramDefs=None, lumiPerPeriod=None, periods=None, getFlavour=None, isElectron=False, systName=None, seedFun=None, defineOnFirstUse=True)

	Construct a scalefactor callable

Warning

This function is deprecated. Use correctionlib [https://cms-nanoaod.github.io/correctionlib/] and
get_correction() instead.

	Parameters:

	
	objType – object type: "lepton", "dilepton", or "jet"

	key – key in sfLib (or tuple of keys, in case of a nested dictionary),
or JSON path (or list thereof) if sfLib is not specified

	sfLib – dictionary (or nested dictionary) of scale factors.
A scale factor entry is either a path to a JSON file, or a list of pairs (periods, path),
where periods is a list of periods found in lumiPerPeriod and path is a path
to the JSON file with the scale factors corresponding to those run periods.

	combine – combination strategy for combining different run periods
("weight" or "sample")

	paramDefs – dictionary of binning variable definitions (name to callable)

	additionalVariables – additional binning variable definitions (TODO: remove)

	lumiPerPeriod – alternative definitions and relative weights of run periods

	periods – Only combine scale factors for those periods

	isElectron – if True, will use supercluster eta instead of eta (for "lepton" type only)
(TODO: find a better way of doing that)

	systName – name of the associated systematic nuisance parameter

	seedFun – (only when combining scalefactor by sampling)
callable to get a random generator seed for an object, e.g. lambda l : l.idx+42

	defineOnFirstUse – wrap with defineOnFirstUse()
(to define as a column and reuse afterwards),
this is enabled by default since it is usually more efficient

	Returns:

	a callable that takes (object, variation="Nominal")
and returns a floating-point number proxy

	
bamboo.scalefactors.lumiPerPeriod_default = {'Run2016B': 5750.491, 'Run2016C': 2572.903, 'Run2016D': 4242.292, 'Run2016E': 4025.228, 'Run2016F': 3104.509, 'Run2016G': 7575.824, 'Run2016H': 8650.628, 'Run2017B': 4793.97, 'Run2017C': 9632.746, 'Run2017D': 4247.793, 'Run2017E': 9314.581, 'Run2017F': 13539.905, 'Run2018A': 14027.614, 'Run2018B': 7066.552, 'Run2018C': 6898.817, 'Run2018D': 31747.582, 'Run271036to275783': 6274.191, 'Run275784to276500': 3426.131, 'Run276501to276811': 3191.207, 'Run315264to316360': 8928.97, 'Run316361to325175': 50789.746}

	Integrated luminosity (in 1/pb) per data taking period

	
bamboo.scalefactors.makeBtagWeightItFit(jets, sfGetter)

	Construct the full event weight based on b-tagging scale factors (continous/iterativeFit)

Combines the b-tagging scale factors into the event weight needed to correct the simulation
(the event weight can then directly be passed to a selection),
by making a product of the scale factors over all jets.
See the note [https://twiki.cern.ch/twiki/bin/view/CMS/BTagShapeCalibration] about
correcting the normalization when using these scale factors.

	Parameters:

	
	jets – the jet collection in the event

	sfGetter – a callable that takes the the hadron flavour (int)
and returns the correction object for the b-tagging scale factors of that jet flavour
(i.e., itself a callable that takes the jet and returns the scale factor)
See bamboo.scalefactors.get_bTagSF_itFit().

	Returns:

	a weight proxy (with all systematic variations configured in the scale factors)

	Example:

	

>>> btvSF = lambda flav: get_bTagSF_itFit("btv.json", "deepJet", "btagDeepFlavB", flav, ...)
>>> btvWeight = makeBtagWeightItFit(tree.jet, btvSF)
>>> sel_btag = sel.refine("btag", cut=..., weight=btvWeight)

	
bamboo.scalefactors.makeBtagWeightMeth1a(jets, tagger, wps, workingPoints, sfGetter, effGetters)

	Construct the full event weight based on b-tagging scale factors
(fixed working point) and efficiencies

Combines the b-tagging scale factors and MC efficiencies for fixed working points
into the event weight needed to correct the simulation (the event weight can then
directly be passed to a selection). The weight is computed according to
Method 1a [https://twiki.cern.ch/twiki/bin/viewauth/CMS/BTagSFMethods#1a_Event_reweighting_using_scale], # noqa: B950
with support for several working points.

While the scale factors can be loaded from the POG-provided JSON files,
the efficiencies need to be computed by the analyzers.

	Parameters:

	
	jets – the jet collection in the event

	tagger – the name of the tagger in the event

	wps – a list of working points for which the b tagging must be corrected,
e.g. [“L”, “T”] for computing the weight using scale factors for the L and T
working points. Note: always provide the working points in increasing order of “tightness”!

	workingPoints – a dictionary providing the working point value for the discriminator

	sfGetter – a callable that takes the working point (str) and the hadron flavour (int)
and returns the correction object for the b-tagging scale factors of that working point
and jet flavour (i.e., itself a callable that takes the jet and returns the scale factor).
See bamboo.scalefactors.get_bTagSF_fixWP().

	effGetters – a dictionary with keys = working points and values = callables that can be evaluated
on a jet and return the b-tagging efficiency for that working point. Typically,
these would be correction objects parameterized using the jet pt, eta and hadron flavour.

	Returns:

	a weight proxy (with all systematic variations configured in the scale factors)

	Example:

	

>>> btvSF = lambda wp, flav: get_bTagSF_fixWP("btv.json", "deepJet", wp, flav, ...)
>>> btvEff = {"M": get_correction("my_btag_eff.json", ...)}
>>> btvWeight = makeBtagWeightMeth1a(tree.jet, "btagDeepFlavB", ["M"], {"M": 0.2783},
>>> btvSF, btvEff)
>>> sel_btag = sel.refine("btag", cut=..., weight=btvWeight)

ROOT utilities

The bamboo.root module collects a set of thin wrappers around ROOT
methods, and centralizes the import of the Cling interpreter global namespace
in PyROOT. For compatibility, it is recommended that user code uses
from bamboo.root import gbl rather than import ROOT as gbl or
from cppyy import gbl.

	
bamboo.root.addDynamicPath(libPath)

	Add a dynamic library path to the ROOT interpreter

	
bamboo.root.addIncludePath(incPath)

	Add an include path to the ROOT interpreter

	
bamboo.root.findLibrary(libName)

	Check if a library can be found, and returns the path in that case

	
bamboo.root.loadDependency(bambooLib=None, includePath=None, headers=None, dynamicPath=None, libraries=None)

	Load a C++ extension

	Parameters:

	
	bambooLib – name(s) of the bamboo extension libraries, if any

	includePath – include directory for headers

	headers – headers to load explicitly (which can depend on other headers in the inclue path)

	dynamicPath – dynamic library path to add

	libraries – additional shared libraries to load

	
bamboo.root.loadHeader(headerName)

	Include a C++ header in the ROOT interpreter

	
bamboo.root.loadLibrary(libName)

	Load a shared library in the ROOT interpreter

	
class bamboo.root.once(fun)

	Function decorator to make sure things are not loaded more than once

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bamboo	

 	
 	
 bamboo.analysismodules	

 	
 	
 bamboo.analysisutils	

 	
 	
 bamboo.plots	

 	
 	
 bamboo.root	

 	
 	
 bamboo.scalefactors	

 	
 	
 bamboo.treedecorators	

 	
 	
 bamboo.treefunctions	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

_

 	
 	__call__() (bamboo.scalefactors.BtagSF method)

 	__init__() (bamboo.analysismodules.AnalysisModule method)

 	(bamboo.analysismodules.DataDrivenContribution method)

 	(bamboo.analysismodules.HistogramsModule method)

 	(bamboo.analysismodules.NanoAODHistoModule method)

 	(bamboo.analysismodules.NanoAODSkimmerModule method)

 	(bamboo.plots.CategorizedSelection method)

 	(bamboo.plots.CutFlowReport method)

 	(bamboo.plots.DerivedPlot method)

 	(bamboo.plots.EquidistantBinning method)

 	(bamboo.plots.FactoryBackend method)

 	(bamboo.plots.LateSplittingSelection method)

 	(bamboo.plots.Plot method)

 	(bamboo.plots.Product method)

 	(bamboo.plots.Selection method)

 	(bamboo.plots.SelectionWithSub method)

 	(bamboo.plots.Skim method)

 	(bamboo.plots.SummedPlot method)

 	(bamboo.plots.VariableBinning method)

 	(bamboo.scalefactors.BtagSF method)

A

 	
 	abs() (in module bamboo.treefunctions)

 	acos() (in module bamboo.treefunctions)

 	add() (bamboo.plots.CutFlowReport method)

 	addArgs() (bamboo.analysismodules.AnalysisModule method)

 	(bamboo.analysismodules.DataDrivenBackgroundAnalysisModule method)

 	(bamboo.analysismodules.HistogramsModule method)

 	(bamboo.analysismodules.SkimmerModule method)

 	addCategory() (bamboo.plots.CategorizedSelection method)

 	addDynamicPath() (in module bamboo.root)

 	addIncludePath() (in module bamboo.root)

 	addLumiMask() (in module bamboo.analysisutils)

 	
 	addPrintout() (in module bamboo.analysisutils)

 	AnalysisModule (class in bamboo.analysismodules)

 	AND() (in module bamboo.treefunctions)

 	appliesTo() (bamboo.treedecorators.CalcCollectionsGroups method)

 	(bamboo.treedecorators.NanoReadRochesterVar method)

 	(bamboo.treedecorators.NanoReadTauESVar method)

 	(bamboo.treedecorators.NanoSystematicVarSpec method)

 	(bamboo.treedecorators.ReadJetMETVar method)

 	(bamboo.treedecorators.ReadVariableVarWithSuffix method)

 	array() (in module bamboo.treefunctions)

 	asin() (in module bamboo.treefunctions)

 	atan() (in module bamboo.treefunctions)

B

 	
 	
 bamboo.analysismodules

 	module

 	
 bamboo.analysisutils

 	module

 	
 bamboo.plots

 	module

 	
 bamboo.root

 	module

 	
 	
 bamboo.scalefactors

 	module

 	
 bamboo.treedecorators

 	module

 	
 bamboo.treefunctions

 	module

 	BtagSF (class in bamboo.scalefactors)

 	buildGraph() (bamboo.plots.FactoryBackend method)

C

 	
 	c_bool() (in module bamboo.treefunctions)

 	c_float() (in module bamboo.treefunctions)

 	c_int() (in module bamboo.treefunctions)

 	CalcCollectionsGroups (class in bamboo.treedecorators)

 	CategorizedSelection (class in bamboo.plots)

 	changesTo() (bamboo.treedecorators.CalcCollectionsGroups method)

 	(bamboo.treedecorators.NanoSystematicVarSpec method)

 	clone() (bamboo.plots.Plot method)

 	collectDependencyResults() (bamboo.plots.DerivedPlot method)

 	combine() (in module bamboo.treefunctions)

 	configureJets() (in module bamboo.analysisutils)

 	
 	configureRochesterCorrection() (in module bamboo.analysisutils)

 	configureSVfitCalculator() (in module bamboo.analysisutils)

 	configureTauESCorrection() (in module bamboo.analysisutils)

 	configureType1MET() (in module bamboo.analysisutils)

 	construct() (in module bamboo.treefunctions)

 	cos() (in module bamboo.treefunctions)

 	create() (bamboo.plots.FactoryBackend class method)

 	(bamboo.plots.LateSplittingSelection static method)

 	(bamboo.plots.SelectionWithDataDriven static method)

 	customizeAnalysisCfg() (bamboo.analysismodules.AnalysisModule method)

 	CutFlowReport (class in bamboo.plots)

D

 	
 	DataDrivenBackgroundAnalysisModule (class in bamboo.analysismodules)

 	DataDrivenBackgroundHistogramsModule (class in bamboo.analysismodules)

 	DataDrivenContribution (class in bamboo.analysismodules)

 	decorateCMSPhase2SimTree() (in module bamboo.treedecorators)

 	decorateNanoAOD() (in module bamboo.treedecorators)

 	define() (bamboo.plots.FactoryBackend method)

 	(in module bamboo.treefunctions)

 	
 	defineOnFirstUse() (in module bamboo.treefunctions)

 	definePlots() (bamboo.analysismodules.HistogramsModule method)

 	(bamboo.analysismodules.SkimmerModule method)

 	defineSkimSelection() (bamboo.analysismodules.SkimmerModule method)

 	deltaPhi() (in module bamboo.treefunctions)

 	deltaR() (in module bamboo.treefunctions)

 	DerivedPlot (class in bamboo.plots)

E

 	
 	EquidistantBinning (class in bamboo.plots)

 	exclVars() (bamboo.treedecorators.NanoSystematicVarSpec method)

 	(bamboo.treedecorators.ReadJetMETVar method)

 	
 	exp() (in module bamboo.treefunctions)

 	extMethod() (in module bamboo.treefunctions)

 	extVar() (in module bamboo.treefunctions)

F

 	
 	FactoryBackend (class in bamboo.plots)

 	findLibrary() (in module bamboo.root)

 	
 	forceDefine() (in module bamboo.analysisutils)

 	forSystematicVariation() (in module bamboo.treefunctions)

G

 	
 	get() (bamboo.treedecorators.NanoAODDescription static method)

 	get_bTagSF_fixWP() (in module bamboo.scalefactors)

 	get_bTagSF_itFit() (in module bamboo.scalefactors)

 	get_correction() (in module bamboo.scalefactors)

 	get_scalefactor() (in module bamboo.scalefactors)

 	getAFileFromAnySample() (in module bamboo.analysisutils)

 	getATree() (bamboo.analysismodules.AnalysisModule method)

 	getPlotList() (bamboo.analysismodules.HistogramsModule method)

 	
 	getSubsForPlot() (bamboo.plots.SelectionWithSub static method)

 	getSystematicVariations() (in module bamboo.treefunctions)

 	getTasks() (bamboo.analysismodules.AnalysisModule method)

 	getVarName() (bamboo.treedecorators.CalcCollectionsGroups method)

 	(bamboo.treedecorators.NanoReadRochesterVar method)

 	(bamboo.treedecorators.NanoReadTauESVar method)

 	(bamboo.treedecorators.NanoSystematicVarSpec method)

 	(bamboo.treedecorators.ReadJetMETVar method)

 	(bamboo.treedecorators.ReadVariableVarWithSuffix method)

H

 	
 	HistogramsModule (class in bamboo.analysismodules)

I

 	
 	in_range() (in module bamboo.treefunctions)

 	initialize() (bamboo.analysismodules.AnalysisModule method)

 	(bamboo.analysismodules.DataDrivenBackgroundAnalysisModule method)

 	(bamboo.analysismodules.HistogramsModule method)

 	
 	initList() (in module bamboo.treefunctions)

 	initSub() (bamboo.plots.LateSplittingSelection method)

 	(bamboo.plots.SelectionWithSub method)

 	invariant_mass() (in module bamboo.treefunctions)

 	invariant_mass_squared() (in module bamboo.treefunctions)

L

 	
 	LateSplittingSelection (class in bamboo.plots)

 	loadDependency() (in module bamboo.root)

 	loadHeader() (in module bamboo.root)

 	loadLibrary() (in module bamboo.root)

 	
 	loadPlotIt() (in module bamboo.analysisutils)

 	log() (in module bamboo.treefunctions)

 	log10() (in module bamboo.treefunctions)

 	lumiPerPeriod_default (in module bamboo.scalefactors)

M

 	
 	make1D() (bamboo.plots.Plot class method)

 	make2D() (bamboo.plots.Plot class method)

 	make3D() (bamboo.plots.Plot class method)

 	makeBackendAndPlotList() (bamboo.analysismodules.HistogramsModule method)

 	makeBtagWeightItFit() (in module bamboo.scalefactors)

 	makeBtagWeightMeth1a() (in module bamboo.scalefactors)

 	makeMultiPrimaryDatasetTriggerSelection() (in module bamboo.analysisutils)

 	makePileupWeight() (in module bamboo.analysisutils)

 	makePlots() (bamboo.plots.CategorizedSelection method)

 	map() (in module bamboo.treefunctions)

 	max() (in module bamboo.treefunctions)

 	mergeCounters() (bamboo.analysismodules.HistogramsModule method)

 	(bamboo.analysismodules.NanoAODModule method)

 	
 	min() (in module bamboo.treefunctions)

 	modifiedSampleConfig() (bamboo.analysismodules.DataDrivenContribution method)

 	
 module

 	bamboo.analysismodules

 	bamboo.analysisutils

 	bamboo.plots

 	bamboo.root

 	bamboo.scalefactors

 	bamboo.treedecorators

 	bamboo.treefunctions

 	multiSwitch() (in module bamboo.treefunctions)

 	MVAEvaluator (class in bamboo.treefunctions)

 	mvaEvaluator() (in module bamboo.treefunctions)

N

 	
 	NanoAODDescription (class in bamboo.treedecorators)

 	NanoAODHistoModule (class in bamboo.analysismodules)

 	NanoAODModule (class in bamboo.analysismodules)

 	NanoAODSkimmerModule (class in bamboo.analysismodules)

 	NanoReadRochesterVar (class in bamboo.treedecorators)

 	
 	NanoReadTauESVar (class in bamboo.treedecorators)

 	NanoSystematicVarSpec (class in bamboo.treedecorators)

 	nomName() (bamboo.treedecorators.NanoSystematicVarSpec method)

 	(bamboo.treedecorators.ReadJetMETVar method)

 	NOT() (in module bamboo.treefunctions)

O

 	
 	once (class in bamboo.root)

 	
 	OR() (in module bamboo.treefunctions)

P

 	
 	Phi_0_2pi() (in module bamboo.treefunctions)

 	Phi_mpi_pi() (in module bamboo.treefunctions)

 	Plot (class in bamboo.plots)

 	postProcess() (bamboo.analysismodules.AnalysisModule method)

 	(bamboo.analysismodules.DataDrivenBackgroundHistogramsModule method)

 	(bamboo.analysismodules.HistogramsModule method)

 	pow() (in module bamboo.treefunctions)

 	prepareTree() (bamboo.analysismodules.HistogramsModule method)

 	(bamboo.analysismodules.NanoAODModule method)

 	
 	printCutFlowReports() (in module bamboo.analysisutils)

 	produceResults() (bamboo.plots.CutFlowReport method)

 	(bamboo.plots.DerivedPlot method)

 	(bamboo.plots.Plot method)

 	(bamboo.plots.Product method)

 	(bamboo.plots.Skim method)

 	(bamboo.plots.SummedPlot method)

 	Product (class in bamboo.plots)

 	product() (in module bamboo.treefunctions)

R

 	
 	readCounters() (bamboo.analysismodules.HistogramsModule method)

 	(bamboo.analysismodules.NanoAODModule method)

 	readEnvConfig() (in module bamboo.analysisutils)

 	readFromResults() (bamboo.plots.CutFlowReport method)

 	ReadJetMETVar (class in bamboo.treedecorators)

 	ReadVariableVarWithSuffix (class in bamboo.treedecorators)

 	refine() (bamboo.plots.CategorizedSelection method)

 	(bamboo.plots.Selection method)

 	(bamboo.plots.SelectionWithSub method)

 	replacesSample() (bamboo.analysismodules.DataDrivenContribution method)

 	rng_any() (in module bamboo.treefunctions)

 	rng_count() (in module bamboo.treefunctions)

 	rng_find() (in module bamboo.treefunctions)

 	
 	rng_len() (in module bamboo.treefunctions)

 	rng_max() (in module bamboo.treefunctions)

 	rng_max_element_by() (in module bamboo.treefunctions)

 	rng_max_element_index() (in module bamboo.treefunctions)

 	rng_mean() (in module bamboo.treefunctions)

 	rng_min() (in module bamboo.treefunctions)

 	rng_min_element_by() (in module bamboo.treefunctions)

 	rng_min_element_index() (in module bamboo.treefunctions)

 	rng_pickRandom() (in module bamboo.treefunctions)

 	rng_product() (in module bamboo.treefunctions)

 	rng_stddev() (in module bamboo.treefunctions)

 	rng_sum() (in module bamboo.treefunctions)

 	run() (bamboo.analysismodules.AnalysisModule method)

 	runPlotIt() (in module bamboo.analysisutils)

S

 	
 	select() (in module bamboo.treefunctions)

 	Selection (class in bamboo.plots)

 	SelectionWithDataDriven (class in bamboo.plots)

 	SelectionWithSub (class in bamboo.plots)

 	sign() (in module bamboo.treefunctions)

 	sin() (in module bamboo.treefunctions)

 	Skim (class in bamboo.plots)

 	SkimmerModule (class in bamboo.analysismodules)

 	sort() (in module bamboo.treefunctions)

 	
 	splitVariation() (in module bamboo.analysisutils)

 	sqrt() (in module bamboo.treefunctions)

 	static_cast() (in module bamboo.treefunctions)

 	sum() (in module bamboo.treefunctions)

 	SummedPlot (class in bamboo.plots)

 	svFitFastMTT() (in module bamboo.treefunctions)

 	svFitMTT() (in module bamboo.treefunctions)

 	switch() (in module bamboo.treefunctions)

 	systematic() (in module bamboo.treefunctions)

T

 	
 	tan() (in module bamboo.treefunctions)

 	
 	typeOf() (in module bamboo.treefunctions)

U

 	
 	usesSample() (bamboo.analysismodules.DataDrivenContribution method)

V

 	
 	VariableBinning (class in bamboo.plots)

W

 	
 	withMass() (in module bamboo.treefunctions)

 	
 	writePlotIt() (in module bamboo.analysisutils)

Y

 	
 	YMLIncludeLoader (class in bamboo.analysisutils)

 nav.xhtml

 Table of Contents

 		
 Bamboo: A high-level HEP analysis library for ROOT::RDataFrame

 		
 Installation and setup

 		
 Dependencies and environment

 		
 Installation

 		
 For the impatient: recipes for installing and updating

 		
 Test your setup

 		
 Getting started

 		
 Machine learning packages

 		
 Distributed RDataFrame

 		
 EasyBuild-based installation at CP3

 		
 User guide

 		
 Running bambooRun

 		
 Computing environment configuration file

 		
 Analysis YAML file format

 		
 Analysis module

 		
 Specifying cuts, weight, and variables: expressions

 		
 Processing modes

 		
 Examples

 		
 Building expressions

 		
 List of functions

 		
 typeOf()

 		
 c_bool()

 		
 c_int()

 		
 c_float()

 		
 NOT()

 		
 AND()

 		
 OR()

 		
 switch()

 		
 multiSwitch()

 		
 extMethod()

 		
 extVar()

 		
 construct()

 		
 static_cast()

 		
 initList()

 		
 array()

 		
 define()

 		
 defineOnFirstUse()

 		
 abs()

 		
 sign()

 		
 sum()

 		
 product()

 		
 sqrt()

 		
 pow()

 		
 exp()

 		
 log()

 		
 log10()

 		
 sin()

 		
 cos()

 		
 tan()

 		
 asin()

 		
 acos()

 		
 atan()

 		
 max()

 		
 min()

 		
 in_range()

 		
 withMass()

 		
 invariant_mass()

 		
 invariant_mass_squared()

 		
 deltaPhi()

 		
 Phi_mpi_pi()

 		
 Phi_0_2pi()

 		
 deltaR()

 		
 rng_len()

 		
 rng_sum()

 		
 rng_count()

 		
 rng_product()

 		
 rng_max()

 		
 rng_min()

 		
 rng_max_element_index()

 		
 rng_max_element_by()

 		
 rng_min_element_index()

 		
 rng_min_element_by()

 		
 rng_mean()

 		
 rng_stddev()

 		
 rng_any()

 		
 rng_find()

 		
 select()

 		
 sort()

 		
 map()

 		
 rng_pickRandom()

 		
 svFitMTT()

 		
 svFitFastMTT()

 		
 combine()

 		
 systematic()

 		
 getSystematicVariations()

 		
 forSystematicVariation()

 		
 MVAEvaluator

 		
 mvaEvaluator()

 		
 Recipes for common tasks

 		
 Using scalefactors

 		
 CMS correctionlib JSON format

 		
 CP3-llbb JSON format

 		
 CMS BTV CSV format

 		
 Pileup reweighting

 		
 Cleaning collections

 		
 Jet and MET systematics

 		
 Rochester correction for muons

 		
 Energy correction for taus

 		
 Correlating systematic variations

 		
 Splitting a sample into sub-components

 		
 Adding command-line arguments

 		
 Editing the analysis configuration

 		
 Evaluate an MVA classifier

 		
 Obtaining a classifier in the right format

 		
 Testing the evaluation outside RDataFrame

 		
 Make combined plots for different selections

 		
 Producing skimmed trees

 		
 Postprocessing beyond plotIt

 		
 Data-driven backgrounds and subprocesses

 		
 Dealing with (failed) batch jobs

 		
 Reproducible analysis: keep track of the version that produced some results

 		
 Tip: use git worktrees

 		
 Tip: make a python package out of your analysis

 		
 SVfit for the reconstruction of the Higgs mass in H\rightarrow \tau\tau events

 		
 Advanced topics

 		
 Loading (and using) C++ modules

 		
 Distributed RDataFrame

 		
 Ordering selections and plots efficiently

 		
 Different backends

 		
 Under the hood

 		
 Debugging problems

 		
 Different components and their interactions

 		
 Expressions: proxies and operations

 		
 Tree decorations

 		
 Selections, plots, and the RDataFrame

 		
 Running the tests, or adding test cases

 		
 API Reference

 		
 Plots and selections

 		
 CategorizedSelection

 		
 CutFlowReport

 		
 DerivedPlot

 		
 EquidistantBinning

 		
 FactoryBackend

 		
 LateSplittingSelection

 		
 Plot

 		
 Product

 		
 Selection

 		
 SelectionWithDataDriven

 		
 SelectionWithSub

 		
 Skim

 		
 SummedPlot

 		
 VariableBinning

 		
 Analysis modules

 		
 AnalysisModule

 		
 DataDrivenBackgroundAnalysisModule

 		
 DataDrivenBackgroundHistogramsModule

 		
 DataDrivenContribution

 		
 HistogramsModule

 		
 NanoAODHistoModule

 		
 NanoAODModule

 		
 NanoAODSkimmerModule

 		
 SkimmerModule

 		
 Tree decoratorator customisation

 		
 NanoSystematicVarSpec

 		
 ReadVariableVarWithSuffix

 		
 ReadJetMETVar

 		
 NanoReadRochesterVar

 		
 NanoReadTauESVar

 		
 CalcCollectionsGroups

 		
 NanoAODDescription

 		
 decorateNanoAOD()

 		
 decorateCMSPhase2SimTree()

 		
 Helper functions

 		
 YMLIncludeLoader

 		
 addLumiMask()

 		
 addPrintout()

 		
 configureJets()

 		
 configureRochesterCorrection()

 		
 configureSVfitCalculator()

 		
 configureTauESCorrection()

 		
 configureType1MET()

 		
 forceDefine()

 		
 getAFileFromAnySample()

 		
 loadPlotIt()

 		
 makeMultiPrimaryDatasetTriggerSelection()

 		
 makePileupWeight()

 		
 printCutFlowReports()

 		
 readEnvConfig()

 		
 runPlotIt()

 		
 splitVariation()

 		
 writePlotIt()

 		
 Scale factors

 		
 ROOT utilities

_static/file.png

_static/minus.png

_static/plus.png

